
BSDE Approach to Non-Zero-Sum Stochastic

Differential Games of Control and Stopping ∗

Ioannis Karatzas †

INTECH Investment Management

One Palmer Square, Suite 441

Princeton, NJ 08542

ik@enhanced.com

Qinghua Li

Statistics Department, Columbia University

1255 Amsterdam Avenue, 1009 SSW

New York, NY 10027

qinghua@stat.columbia.edu

June 7, 2011

Dedicated to Professor Robert J. Elliott on the Occasion of his 70th Birthday

Abstract

This paper studies two non-zero-sum stochastic differential games of control and stop-
ping. One game has interaction in the players’ stopping rules, whereas the other does
not. Solutions to backward stochastic differential equations (BSDEs) will be shown
to provide the value processes of the first game. A multi-dimensional BSDE with
reflecting barrier is studied in two cases for its solution: existence and uniqueness
with Lipschitz growth, and existence in a Markovian system with linear growth rate.
The extension to linear/quadratic growth rates of the equation allows the controls to
observe the instantaneous volatilities of the value processes in the Markovian case.

Keywords and Phrases: Stochastic differential game, Nash equilibrium, optimal control,
optimal stopping, backward stochastic differential equation.

AMS 2000 Subject Classifications: Primary 93E20, 60G40; secondary 91A06/23/55.

∗We would like to thank Professor Said Hamadène for sending to us the paper Hamadène, Lepeltier and
Peng (1997) [19]. Thanks go to Professor ShiGe Peng for helpful conversations with the second author during
his visit to Columbia University in Fall 2008; in particular, the proof of Theorem 4.1 in this paper is due to
Professor Peng. We would also like to thank Professor Daniel Ocone for his many very helpful comments
and suggestions.

†This author is on partial leave from the Department of Mathematics, Columbia University, New York, NY
10027 (E-mail ik@math.columbia.edu), where his research is supported by the National Science Foundation
under grant NSF-DMS-09-05754.

1



1 Introduction

1.1 Bibliographic notes

We study non-zero-sum stochastic differential games, in which each of several players chooses
an optimal strategy to maximize his own reward - usually the sum of a running reward and
a terminal reward. The rewards of the players do not have to add up to a constant (say,
zero); that is, the game is not necessarily zero-sum. The objective is to find an equilibrium
point; namely, if every player’s strategy is his best response to the other players’ strategies,
then the set of strategies is called an equilibrium point of the game, conventionally a Nash
equilibrium. It is an equilibrium in the sense that no player will profit by unilaterally chang-
ing his strategy, when all the other players’ strategies remain the same. The terminology
“Nash equilibrium” is in deference to J. Nash’s formulation of this notion of equilibrium in
1949. This notion of equilibrium for a non-zero-sum game generalizes the Von Neumann-
Morgenstern notion of saddle point for a zero-sum game.

In the literature on both zero-sum and non-zero-sum stochastic differential games of control,
the existence and the choice of optimal controls are shown to be equivalent to the existence
of controls that satisfy the Isaacs condition, which is the attainability of the maxima or
maxima of the associated Hamiltonians. In contrast to the counterpart optimization prob-
lem studied by Beneš in [1], [2] and by Davis (1973) in [9], the Isaacs (or Nash) condition
for N -player non-zero-sum games does not typically hold. The existence, or non-existence,
of an optimal control set that maximizes the Hamiltonians serves as an easy-to-verify local
condition equivalent to the existence, or non-existence, of equilibrium controls.

With Markovian rewards, which are functions of the current value of an underling diffu-
sion state process, partial differential equations are a handy tool. Over the past thirty years,
Bensoussan, Frehse and Friedman built a regularity theory of PDE’s to study stochastic dif-
ferential games. Among their extensive works, Bensoussan and Friedman (1977) considered
in [5] games of optimal stopping. The existence of optimal stopping times for such games
is reduced to the study of regular solutions to quasi-variational inequalities, assuming con-
tinuous and bounded running rewards and terminal rewards. Bensoussan and Frehse (2000)
in [3] solved a non-zero-sum game of optimal controls, which is terminated when the state
process exits a bounded domain. Their running rewards are quadratic forms of the controls.
The monograph by Fleming and Soner (1993) [17] gives a full account of controlled Markov
diffusions.

As a tool for stochastic control theory, backward stochastic differential equations (BSDEs
for short) were first proposed by Bismut in the 1970’s. The connection between the two
subjects can be viewed as a stochastic version of the verification theorems for the control
of Markov diffusions. Pardoux and Peng (1990) proved in [34] existence and uniqueness
of the solution to a BSDE with uniformly Lipschitz growth. Considerable attention has
been devoted to studying the association between BSDEs and stochastic differential games.
Cvitanić and Karatzas (1996) proved in [8] existence and uniqueness of the solution to the
equation with double reflecting barriers, and associated their BSDE to a zero-sum Dynkin
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game. Their work generalized El Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997)
[12] on one-dimensional BSDE with one reflecting boundary, which captures early stopping
features as that of American options. Hamadène and Lepeltier (2000) [22] and Hamadène
(2006) [23] added controls to the Dynkin game studied by Cvitanić and Karatzas (1996) [8],
the tool still being BSDE with double reflecting barriers. Markovian rewards of games cor-
respond to the equations in the Markovian framework. Hamadène studied in [20] and [21]
Nash equilibrium control with forward-backward SDE. In Hamadène, Lepeltier and Peng
(1997) [19], the growth rates of their forward-backward SDE are linear in the value process
and the volatility process, and polynomial in the state process. Their state process is a
diffusion satisfying an “L

2-dominance” condition. These three authors solve a non-zero-sum
game without stopping, based on existence result of the multi-dimensional BSDE.

The martingale method also facilitates the study of zero-sum and non-zero-sum games, and
is particularly useful if the rewards depend on the path of the state process. This method
is surveyed by Davis (1979) [10]. Elliott (1976) [14] shows that the Isaacs condition im-
plies the existence of value and saddle strategies for a zero-sum game of control. When
there are terminal rewards only, Lepeltier and Etourneau (1987) in [32] used martingale
techniques to provide sufficient conditions for the existence of optimal stopping times on
processes that need not be Markovian; their general theory requires some order assumption
and supermartingale assumptions on the terminal reward. Karatzas and Zamfirescu (2008)
in [31] took the martingale approach to characterize, then construct, saddle points for zero-
sum games of control and stopping. They also characterized the value processes by the
semimartingale decompositions and proved a stochastic maximum principle for continuous,
bounded running reward that can be a functional of the diffusion state process.

Zero-sum games of stopping (games of timing, Dynkin games) are connected to singular
controls, in the sense that, for convex cost functions, the value functions of the former games
are derivatives of the value functions of the latter. This connection was first observed by
Taksar (1985) [35], followed by Fukushima and Taksar (2002) [18] in a Markovian setting via
solving free-boundary problems, and by Karatzas and Wang (2001) [30] in a non-Markovian
setting based on weak compactness arguments.

1.2 This paper

This paper considers a non-zero-sum game with features of both stochastic control and op-
timal stopping, for a process of diffusion type via the backward SDE approach. Running
rewards, terminal rewards and early exercise rewards are all included. The running rewards
can be functionals of the diffusion state process. Since the Nash equilibrium of an N -player
non-zero-sum game is technically not more difficult than a two-player non-zero-sum game,
only notationally more tedious, the number of players is assumed to be two, for concreteness.

Section 2 solves for the existence of Nash equilibrium for the stochastic games of control
and stopping. The controls enter the drift of the underlying state process. Each player
controls and stops the reward streams. In Game 2.1, a player’s choice of stopping time
terminates his own reward stream only. The value processes of both players are part of the
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solution to a multi-dimension BSDE with reflecting barrier. The instantaneous volatilities
of the two players’ value processes are explicitly expressed in the solution. Existence of
the solution to general forms of the multi-dimensional BSDE with reflecting barrier will be
proven in section 3 and section 4. Then, in the Markovian framework, the instantaneous
volatilities can enter the controls as arguments, in which case the game is said to observe
volatilities in addition to the other two arguments, namely time and the state-process. In
Game 2.2, each player can terminate the game not only for himself but also for the other
player(s). We shall establish the existence of an equilibrium in a weaker sense than that for
Game 2.1. It seems beyond the reach of our current ability, to develop a more general theory
with the present methods.

Section 3 proves existence and uniqueness of the solution to a multi-dimensional BSDE
with reflecting barrier, a general form of the one that accompanies Game 2.1. Section 4
discusses extension of the existence of solutions to equations of ultra-Lipschitz growth.

The BSDE approach here proposes a multi-dimensional BSDE whose value processes in
the solution provide the value processes of the non-zero-sum games. General existence result
of solutions to multi-dimensional BSDE with reflecting barrier still need to be developed. As
is proven in Hu and Peng (2006) [25], in several dimensions, the comparison theorem holds
only under very restrictive conditions. Cohen, Elliott and Pearce (2010) [16] recently give
a general component-wise condition for comparison of multi-dimensional BSDEs. Without
invoking comparison results or penalization methods, we use Picard iterations to show the
existence of solutions to equations with Lipschitz drivers. When the growth condition is
ultra-Lipschitz, convergence arguments of the usual Picard type iteration cannot proceed,
either. In a Markovian framework, this paper proves the Markovian structure of solutions
to multi-dimensional reflected BSDEs with Lipschitz growth, and uses this Markovian struc-
ture as a starting point to extend existence results to equations with growth rates which are
linear in the value and volatility processes, and polynomial in the state process. Once again,
the method does not rely on comparison theorems. The linear/quadratic growth rates of the
equations allow the controls to observe the instantaneous volatilities of the players’ value
processes.

Our multi-dimensional BSDEs with reflection differ from the multi-dimensional BSDEs with
oblique reflection in Hu and Tang (2010) [26], in Hamadène and Zhang (2010) [24] and in
Chassagneux, Elie and Kharroubi (2010) [6], which are associated with optimal switching
problems. Our equations are generalizations of the doubly reflected BSDEs in Cvitanić and
Karatzas (1996) [8], which are associated with Dynkin games. The difference of these equa-
tions are determined by the essential difference of control problems, zero-sum games and
non-zero-sum games.

We have tried to separate the game aspect and the BSDE aspect in the write-up of the
paper, so we organize it in such a way that readers interested in stochastic differential games
can read section 2 only, ignoring BSDE technicalities; whereas BSDE connoisseurs can ex-
amine section 3 and section 4.
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With BSDEs as one of its tools, the theory of Stochastic Control has extensive applica-
tions in the rich fields of Mathematical Finance and Economics, like pricing and hedging
of contingent claims, portfolio optimization, risk management, algorithmic trading, utility
maximization, and so on. Many of these subjects are discussed in the survey paper El Karoui,
Peng and Quenez (1997) [13]. The literature on Mathematical Finance tends to focus on the
optimal behavior of one agent, or at most on zero-sum games between a buyer and a seller.
Real-world financial phenomena, on the other hand, result inherently from the interaction of
several agents, who try to optimize their own profits and whose actions form a non-zero-sum
game. The present work can be seen as a contribution to the mathematical foundations of
the study of the interaction among several such agents in financial markets.

2 The games of Control and Stopping

In the non-zero sum games of control and stopping to be discussed in this paper, each player
receives a reward. Based on their up-to-date information, the two players I and II, respec-
tively, first choose their controls u and v, then the times τ and ρ to stop their own reward
streams. The controls u and v are two processes that enter the dynamics of the underly-
ing state process for the rewards. The optimality criterion for our non-zero-sum games is
that of a Nash equilibrium, in which each player’s expected reward is maximized when the
other player maximizes his. In taking conditional expectations of the rewards, the change-
of-measure setup to be formulated fixes one single Brownian filtration and one single state
process for all controls u and v. Hence when optimizing the expected rewards over the con-
trol sets, there is no need to keep in mind the filtration or the state process.

Let us set up the rigorous model. We start with a d-dimensional Brownian motion B(·) with
respect to its generated filtration {Ft}0≤t≤T on the canonical probability space (Ω,F ,P), in
which Ω = Cd[0, T ] is the set of all continuous d-dimensional function on a finite determin-
istic time horizon [0, T ], F = B

(

Cd[0, T ]
)

is the Borel sigma algebra, and P is the Wiener
measure.

For every t ∈ [0, T ], define a mapping φt : C[0, T ] → [0, T ] by φt(y)(s) = y(s ∧ t), which
truncates the function y ∈ C[0, T ]. For any y0 ∈ C[0, T ], the pre-image φ−1

t (y0) collects all
functions in C[0, T ] which are identical to y0 up to time t. A stopping rule is a mapping
τ : C[0, T ] → [0, T ], such that

{y ∈ C[0, T ] : τ(y) ≤ t} ∈ φ−1
t (B (C[0, T ])) . (2.1)

The set of all stopping rules ranging between t1 and t2 is denoted by S (t1, t2).

In the path-dependent case, the state process X(·) solves the stochastic functional equa-
tion

X(t) = X(0) +

∫ t

0

σ(s,X)dBs, 0 ≤ t ≤ T, (2.2)

where the volatility matrix σ : [0, T ]×Ω → R
d×R

d, (t, ω) 7→ σ(t, ω), is a predictable process.
In particular in the Markovian case, the volatility matrix σ : [0, T ] × R

d → R
d × R

d is a
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deterministic mapping [0, T ] × R
d ∋ (t, x) 7→ σ(t, x) ∈ R

d × R
d, and then the state process

equation (2.2) becomes the stochastic differential equation

X(t) = X(0) +

∫ t

0

σ(s,X(s))dBs, 0 ≤ t ≤ T. (2.3)

The Markovian case is indeed a special case of path-dependence. Since it will receive some
extra attention later at the end of subsection 2.2, we describe the Markovian framework
separately from the more general path-dependent case.

Assumption 2.1 (1) The volatility matrix σ(t, ω) is nonsingular for every (t, ω) ∈ [0, T ]×
Ω;
(2) there exists a positive constant A such that

|σij(t, ω) − σij(t, ω̄)| ≤ A sup
0≤s≤t

|ω(s) − ω̄(s)|, (2.4)

for all 1 ≤ i, j ≤ d, for all t ∈ [0, T ], ω, ω̄ ∈ Ω.

Under Assumption 2.1 (2), for every initial value X(0) ∈ R
d, there exists a pathwise unique

strong solution to equation (2.2) (Theorem 14.6, Elliott (1982) [15]).

The controls u and v take values in some given separable metric spaces A1 and A2, re-
spectively. We shall assume that A1 and A2 are countable unions of nonempty, compact
subsets of these spaces, and are endowed with the σ-algebras A1 and A2 of their respective
Borel subsets. The controls u and v are said
(i) to be open loop, if ut = µ(t, ω) and vt = ν(t, ω) are {Ft}0≤t≤T -adapted processes on
[0, T ], where µ : [0, T ] × Ω → A1 and ν : [0, T ] × Ω → A2 are non-anticipative measurable
mappings;
(ii) to be closed loop, if ut = µ(t, X) and vt = ν(t, X) are non-anticipative functionals of
the state process X(·), for 0 ≤ t ≤ T , where µ : [0, T ]×Ω → A1 and ν : [0, T ]×Ω → A2 are
deterministic measurable mappings;
(iii) to be Markovian, if ut = µ(t, X(t)) and vt = ν(t, X(t)), for 0 ≤ t ≤ T , where
µ : [0, T ] × R

d → A1 and ν : [0, T ] × R
d → A2 are deterministic measurable functions.

In the path-dependent case, the set U × V of admissible controls are taken as all the
closed loop controls. The techniques that we shall use to solve for the optimal closed loop
controls also apply to the open loop controls, so the extension of the results from closed loop
to open loop is only a matter of more complicated notation. The discussion will be restricted
within the class of closed loop controls for clarity of the exposition. In the Markovian case,
the set U ×V of admissible controls are taken as all the Markovian controls. The collection
of Markovian controls is a subset of the collection of closed loop controls.

We consider the predictable mapping

f : [0, T ] × Ω × A1 × A2 → R
d,

(t, ω, µ(t, ω), ν(t, ω)) 7→ f(t, ω, µ(t, ω), ν(t, ω)),
(2.5)
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in the path-dependent case, and the deterministic measurable mapping

f : [0, T ] × Ω × A1 × A2 → R
d,

(t, ω, µ(t, ω(t)), ν(t, ω(t))) 7→ f(t, ω(t), µ(t, ω(t)), ν(t, ω(t))),
(2.6)

in the Markovian case, satisfying:

Assumption 2.1 (continued)
(3) There exists a positive constant A such that

∣

∣σ−1(t, ω)f(t, ω, µ(t, ω), ν(t, ω))
∣

∣≤ A, (2.7)

and
|σ(t, ω)|2 ≤ A sup

0≤s≤t

(

1 + |ω(s)|2
)

, (2.8)

for all 0 ≤ t ≤ T , ω ∈ Ω, and for all the A1×A2-valued representative elements (µ(t, ω), ν(t, ω))
of the control spaces U × V .

For generic controls ut = µ(t, ω) and vt = ν(t, ω), we define P
u,v, a probability measure

equivalent to P, via the Radon-Nikodym derivative

dPu,v

dP

∣

∣

∣

∣

Ft

= exp

{
∫ t

0

σ−1(s,X)f(s,X, us, vs)dBs −
1

2

∫ t

0

|σ−1(s,X)f(s,X, us, vs)|
2ds

}

(2.9)
for 0 ≤ t ≤ T . Then, by the Girsanov Theorem,

B
u,v
t := Bt −

∫ t

0

σ−1(s,X)f(s,X, us, vs)ds, 0 ≤ t ≤ T (2.10)

is a P
u,v-Brownian Motion on [0, T ] with respect to the filtration {Ft}0≤t≤T . In the Marko-

vian case, the expression of (2.10) can be written as

B
u,v
t = Bt −

∫ t

0

σ−1(s,X(s))f(s,X(s), µ(s,X(s)), ν(s,X(s)))ds, 0 ≤ t ≤ T. (2.11)

On the probability space (Ω,F ,P), and with respect to the filtration {Ft}0≤t≤T , the pair
(X,Bu,v) is a weak solution to the forward stochastic functional equation

X(t) = X(0) +

∫ t

0

f(s,X, us, vs)ds+

∫ t

0

σ(s,X)dBu,v
s , 0 ≤ t ≤ T (2.12)

in the path-dependent case, and a weak solution to the forward stochastic differential equa-
tion

X(t) = X(0) +

∫ t

0

f(s,X(s), µ(s,X(s)), ν(s,X(s)))ds+

∫ t

0

σ(s,X(s))dBu,v
s , 0 ≤ t ≤ T

(2.13)
in the Markovian case.
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When playing the game, the two players choose first their admissible controls u in U and v
in V , then for any given t ∈ [0, T ], they chose τt and ρt from S (t, T ), times for them to quit
the game. The pair of control and stopping rule (u, τ) is up to player I and the pair (v, ρ) is
up to player II. For starting the game at time t, applying controls u and v, and quitting the
game at τt and ρt respectively, the players receive rewards R1

t (τt, ρt, u, v) and R2
t (τt, ρt, u, v).

To take into account the uncertainty inherent in the situation they face, their respective
reward processes are measured by the conditional P

u,v-expectations

E
u,v[R1

t (τt, ρt, u, v)|Ft] and E
u,v[R2

t (τt, ρt, u, v)|Ft]. (2.14)

In the non-zero-sum games, the two players seek first admissible control strategies u∗ in U

and v∗ in V , and then stopping rules τ ∗t and ρ∗t from S (t, T ), to maximize their expected
rewards, in the sense that

E
u∗,v∗ [R1

t (τ
∗
t , ρ

∗
t , u

∗, v∗)|Ft] ≥ E
u,v∗ [R1

t (τt, ρ
∗
t , u, v

∗)|Ft], ∀τt ∈ S (t, T ), ∀u ∈ U ;

E
u∗,v∗ [R2

t (τ
∗
t , ρ

∗
t , u

∗, v∗)|Ft] ≥ E
u∗,v[R2

t (τ
∗
t , ρt, u

∗, v)|Ft], ∀ρt ∈ S (t, T ), ∀v ∈ V .
(2.15)

The interpretation is as follows: when player II employs strategy (ρ∗t , v
∗), the strategy (τ ∗t , u

∗)
maximizes the expected reward of player I over all possible strategies on S (t, T ) × U ;
and vice versa, when player I employs strategy (τ ∗t , u

∗), the strategy (ρ∗t , v
∗) is optimal for

player II over all possible strategies on S (t, T ) × V . The set of controls and stopping rules
(τ ∗, ρ∗, u∗, v∗) is called “equilibrium point”, or Nash equilibrium, for the game. We denote
by

V i(t) := E
u∗,v∗ [Ri

t(τ
∗
t , ρ

∗
t , u

∗, v∗)|Ft], (2.16)

the value process of the game for each player i = 1, 2.

In subsections 2.1-2.2 and subsection 2.3, we shall consider two games, which differ in the
forms of the rewards R1 and R2.

Game 2.1

R1
t (τt, ρt, u, v) = R1

t (τt, u, v) :=

∫ τt

t

h1(s,X, us, vs)ds+ L1(τt)1{τt<T} + ξ11{τt=T};

R2
t (τt, ρt, u, v) = R2

t (ρt, u, v) :=

∫ ρt

t

h2(s,X, us, vs)ds+ L2(ρt)1{ρt<T} + ξ21{ρt=T}.

(2.17)

Game 2.2

R1
t (τt, ρt, u, v)

:=

∫ τt∧ρt

t

h1(s,X, us, vs)ds+ L1(τt)1{τt≤ρt<T} + U1(ρt)1{ρt<τt} + ξ11{τt∧ρt=T};

R2
t (τt, ρt, u, v)

:=

∫ τt∧ρt

t

h2(s,X, us, vs)ds+ L2(ρt)1{ρt≤τt<T} + U2(τt)1{τt<ρt} + ξ21{τt∧ρt=T}.

(2.18)
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The rewards from both games are the sums of cumulative rewards at rates h = (h1, h2)
′,

early exercise rewards L = (L1, L2)
′ and U = (U1, U2)

′, and terminal rewards ξ = (ξ1, ξ2)
′.

Here and throughout this paper the notation M ′ means transpose of some matrix M . The
cumulative reward rates h1 and h2 : [0, T ] × Ω × A1 × A2 → R, (t, ω, µ(t, ω), ν(t, ω)) 7→
hi(t, ω, µ(t, ω), ν(t, ω)), i = 1, 2, are predictable processes in t, non-anticipative functionals
in X(·), and measurable functions in µ(t, ω) and ν(t, ω). The early exercise rewards L :
[0, T ] × Ω → R

2, (t, ω) 7→ L(t, ω) =: L(t), and U : [0, T ] × Ω → R
2, (t, ω) 7→ U(t, ω) =: U(t)

are both {Ft}0≤t≤T -adapted continuous processes. The terminal reward ξ = (ξ1, ξ2)
′ is a

pair of real-valued FT -measurable random variables. In the Markovian case, the rewards
take the form h(t, X, ut, vt) = h(t, X(t), µ(t, X(t)), ν(t, X(t))), L(t) = L̄(t, X(t)), U(t) =
Ū(t, X(t)), and ξ = ξ̄(X(T )), for all 0 ≤ t ≤ T and some deterministic measurable functions
L̄ : [0, T ] × R

d → R, Ū : [0, T ] × R
d → R, and ξ̄ : R

d → R
2.

Assumption 2.2 (1) The early exercise reward processes L and U are continuous, progres-
sively measurable, and L(T ) ≤ ξ holds a.e. on Ω.
(2) There exist some constants p ≥ 1 and Crwd > 0, such that

|h(t, ω, µ(t, ω), ν(t, ω))|+ |L(t, ω)| + |U(t, ω)| + |ξ(ω)| ≤ Crwd

(

1 + sup
0≤s≤t

|ω(s)|2p

)

(2.19)

holds for a.e. (t, ω) in [0, T ]×Ω, and for all admissible controls ut = µ(t, ω) and vt = ν(t, ω).

From the rewards and the coefficients of the state process, we define the Hamiltonians
associated with our games as

H1(t, ω, z1, ut, vt) = H1(t, ω, z1, µ(t, ω), ν(t, ω))

:=z1σ
−1(t, ω)f(t, ω, µ(t, ω), ν(t, ω)) + h1(t, ω, µ(t, ω), ν(t, ω)),

(2.20)

and

H2(t, ω, z2, ut, vt) = H2(t, ω, z2, µ(t, ω), ν(t, ω))

:=z2σ
−1(t, ω)f(t, ω, µ(t, ω), ν(t, ω)) + h2(t, ω, µ(t, ω), ν(t, ω)),

(2.21)

for 0 ≤ t ≤ T , ω ∈ Ω, z1 and z2 in R
d, and for all admissible controls ut = µ(t, ω) and

vt = ν(t, ω). From Assumption 2.1 (3), the Hamiltonians are Lipschitz functions in z1 and
z2, uniformly over all 0 ≤ t ≤ T , ω ∈ Ω, and all admissible controls ut = µ(t, ω) and
vt = ν(t, ω).

Assumption 2.3 (Isaacs condition) There exist admissible controls u∗t = µ∗(t, ω) in U and
v∗t = ν∗(t, ω) in V , such that

H1(t, ω, z1, µ
∗(t, ω), ν∗(t, ω)) ≥ H1(t, ω, z1, µ(t, ω), ν∗(t, ω)),

H2(t, ω, z2, µ
∗(t, ω), ν∗(t, ω)) ≥ H2(t, ω, z2, µ

∗(t, ω), ν(t, ω)),
(2.22)

hold for all 0 ≤ t ≤ T , ω ∈ Ω, (z1, z2) ∈ R
2×d, and for all admissible controls ut = µ(t, ω)

and vt = ν(t, ω).
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The Isaacs conditions on the Hamiltonians are “local” optimality conditions, formulated in
terms of every point (t, z1, z2) in Euclidean space and every path ω in the function space
Ω. Theorem 2.1 takes the local conditions on the Hamiltonians and transforms them into
“global” optimization statements involving each higher-dimensional object, such as stop-
ping time, stochastic process, etc., taking values in Euclidean space and defined over the
probability space. This possibility is afforded by the continuous-time setting, in contrast to
some discrete-time optimization problems where local maximization need not lead to global
maximization.

When linking value processes of the games to the solutions to BSDEs, we shall discuss
the solutions in the following spaces M

2(m; 0, T ) and L
2(m×d; 0, T ) of processes, defined as

M
k(m; t, T ) :=

{

m-dimensional predictable process φ(·) s.t. E

[

sup
[t,T ]

φ2
s

]

≤ ∞

}

, (2.23)

and

L
k(m× d; t, T ) :=

{

m× d-dimensional predictable process φ(·) s.t. E

[
∫ T

t

φ2
sdt

]

≤ ∞

}

,

(2.24)

for k = 1, 2, and 0 ≤ t ≤ T .

2.1 The duality between Game and BSDE

This subsection studies Game 2.1 where a player’s time to quit is determined by his own
decision. We shall demonstrate that the solution to a two-dimensional BSDE with reflecting
barrier provides the two players’ value processes. The optimal stopping rules will be derived
from the reflecting conditions on the BSDE. The optimal controls will come from the Isaacs
condition, namely, Assumption 2.3 on the Hamiltonians, which play here the role of the
driver of the corresponding BSDE.

The solution to the following system of BSDEs






















































Y
u,v
1 (t) =ξ1 +

∫ T

t

H1(s,X, Z
u,v
1 (s), us, vs)ds−

∫ T

t

Z
u,v
1 (s)dBs +K

u,v
1 (T ) −K

u,v
1 (t),

Y
u,v
1 (t) ≥ L1(t), 0 ≤ t ≤ T ;

∫ T

0

(Y u,v
1 (t) − L1(t))dK

u,v
1 (t) = 0;

Y
u,v
2 (t) =ξ2 +

∫ T

t

H2(s,X, Z
u,v
2 (s), us, vs)ds−

∫ T

t

Z
u,v
2 (s)dBs +K

u,v
2 (T ) −K

u,v
2 (t),

Y
u,v
2 (t) ≥ L2(t), 0 ≤ t ≤ T ;

∫ T

0

(Y u,v
2 (t) − L2(t))dK

u,v
2 (t) = 0,

(2.25)
provides the players’ value processes in Game 2.1, with the proper choice of controls u = u∗

and v = v∗ mandated by Isaacs condition. From now on, a BSDE with reflecting barrier in the
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form of (2.25) will be denoted as (T, ξ,H(u, v), L) for short. The solution to this BSDE is a
triple of processes (Y u,v, Zu,v, Ku,v), satisfying Y u,v(·) ∈ M

2(2; 0, T ), Zu,v(·) ∈ L
2(2×d; 0, T ),

and Ku,v(·) = (Ku,v
1 (·), Ku,v

2 (·))′ a pair of continuous increasing processes in M
2(2; 0, T ).

We focus on the game aspect in this section, making use of such results as existence of so-
lutions to BSDEs, one-dimensional comparison theorems, and continuous dependence prop-
erties, to be proved in section 3 and section 4. The proofs of these results will not rely on
developments in this section.

Theorem 2.1 Let (Y u,v, Zu,v, Ku,v) solve the BSDE (2.25) with parameters (T, ξ,H(u, v), L).
Define the stopping rules

τ ∗t (y; r) := inf{s ∈ [t, r] : y(s) ≤ L1(s)} ∧ r, (2.26)

and
ρ∗t (y; r) = inf{s ∈ [t, r] : y(s) ≤ L2(s)} ∧ r, (2.27)

for y ∈ C[0, T ] and r ∈ [t, T ]. Consider the stopping times

τt(u, v) := τ ∗t (Y u,v
1 (·);T ) and ρt(u, v) := ρ∗t (Y u,v

2 (·);T ) , (2.28)

and suppose that the controls u∗ ∈ U and v∗ ∈ V satisfy the Isaacs condition, Assumption
2.3. Then the quadruple (τ(u∗, v∗), ρ(u∗, v∗), u∗, v∗) is a Nash equilibrium for Game 2.1, and
we have V i(t) = Y

u∗,v∗

i (t), i = 1, 2.

To prove Theorem 2.1, we shall need the following result.

Lemma 2.1 For i = 1, 2, the process

M
u,v
i (·) :=

∫ ·

t

Z
u,v
i (s)dBu,v

s = Y
u,v
i (·) − Y

u,v
i (t) +

∫ ·

t

hi(s,X, us, vs)ds+K
u,v
i (·) −K

u,v
i (t)

(2.29)

is a P
u,v-martingale.

Proof. To show that Mu,v
i (·) is a P

u,v-martingale, it suffices to show that Mu,v
i (·) is of class

DL , meaning that

lim
c→∞

sup
τ∈S t,T

E
u,v
[

|Mu,v
i (τ)| 1{|Mu,v

i (τ)|>c}

∣

∣

∣
Ft

]

= 0. (2.30)

For the fixed t ∈ [0, T ], denote

θ(s, us, vs) := σ−1(s,X)f(s,X, us, vs), t ≤ s ≤ T. (2.31)

For any τ ∈ S (t, T ), from the change of measure (2.9) and the Bayes rule,

E
u,v
[

|Mu,v
i (τ)| 1{|Mu,v

i (τ)|>c}

∣

∣

∣
Ft

]

=E

[

exp

{
∫ τ

t

θ(s, us, vs)dBs −
1

2

∫ τ

t

|θ(s, us, vs)|
2ds

}

|Mu,v
i (τ)| 1{|Mu,v

i (τ)|>c}

∣

∣

∣

∣

Ft

]

≤E

[

sup
t≤s≤T

exp

{
∫ s

t

2θ(r, ur, vr)dBr −
1

2

∫ s

t

2|θ(r, ur, vr)|
2dr

}
∣

∣

∣

∣

Ft

]1/2

· E

[

sup
t≤s≤T

|Mu,v
i (s)|2 1{ sup

t≤s≤T

|Mu,v
i (s)|2>c2}

∣

∣

∣

∣

Ft

]1/2

.

(2.32)
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From the expression (2.29) and Assumption 2.2 (2), there exists some constant C0, such that

sup
t≤s≤T

|Mu,v
i (s)|2 ≤ C0

(

1 + sup
t≤s≤T

|Y u,v
i (s)|

2
+ sup

t≤s≤T
|X(s)|2p + |Ku,v

i (T )|
2

)

. (2.33)

From the definition of the solutions to reflected BSDEs, as in section 3, we know that

E

[

sup
t≤s≤T

(Y u,v
i (s))

2
+ |Ku,v

i (T )|
2

]

<∞ (2.34)

holds. Since (X,B) is a solution to the stochastic functional equation (2.2), there exists (cf.
page 306 of Karatzas and Shreve (1988) [28]) a constant C1 such that

E

[

sup
t≤s≤T

|X(s)|2p

]

≤ C1

(

1 + |X(0)|2p
)

<∞. (2.35)

We then apply the dominated convergence theorem to the last conditional expectations in
(2.32) to get

E

[

sup
t≤s≤T

|Mu,v
i (s)|

2 1{ sup
t≤s≤T

|Mu,v
i (s)|2>c2}

∣

∣

∣

∣

Ft

]

→ 0, (2.36)

as c→ 0. It remains to show that

E

[

sup
t≤s≤T

exp

{
∫ s

t

2θ(r, ur, vr)dBr −
1

2

∫ s

t

2|θ(r, ur, vr)|
2dr

}]

<∞. (2.37)

Because |θ(s, us, vs)| is bounded by the constant A, from Assumption 2.1 (3) and identity
(2.31), we know that the process

exp

{
∫ ·

t

2θ(s, us, vs)dBs −
1

2

∫ ·

t

2|θ(s, us, vs)|
2ds

}

(2.38)

is a.e. bounded by the constant eA2T times the exponential P-martingale

Q(·) := exp

{
∫ ·

t

2θ(s, us, vs)dBs −
1

2

∫ ·

t

4|θ(s,X, us, vs)|
2ds

}

(2.39)

on [0, T ] with quadratic variation process

〈Q〉 (·) = 4

∫ ·

t

Q2(s)|θ(s, us, vs)|
2ds. (2.40)

But

Q2(·)|θ(·, u·, v·)|
2

≤A2e4A2T exp

{
∫ ·

t

4θ(s, us, vs)dBs −
1

2

∫ ·

t

16|θ(s, us, vs)|
2ds

}

.
(2.41)
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By the Burkholder-Davis-Gundy inequalities and inequality (2.41), there exists a constant

C, such that E

[

sup
t≤s≤T

Q(s)

]

is dominated by

2CAe2A2T
E

[

(
∫ T

t

exp

{
∫ s

t

4θ(r, ur, vr)dBr −
1

2

∫ s

t

16|θ(r, ur, vr)|
2dr

}

ds

)1/2
]

≤2CAe2A2T

(
∫ T

t

E

[

exp

{
∫ s

t

4θ(r, ur, vr)dBr −
1

2

∫ s

t

16|θ(r, ur, vr)|
2dr

}]

ds

)1/2

=2CAe2A2T (T − t)1/2.

This proves (2.37), whereas the expressions (2.32), (2.36) and (2.37) together lead to (2.30).
�

Proof of Theorem 2.1. Let (Y u,v, Zu,v, Ku,v) solve BSDE (2.25) with parameters (T, ξ,H(u, v), L).
Taking a stopping rule τt ∈ S (t, T ), and integrating dY u,v

1 from t to τt, we obtain

Y
u,v
1 (t) =Y u,v

1 (τt) +

∫ τt

t

H1(s,X, Z
u,v
1 (s), us, vs)ds−

∫ τt

t

Z
u,v
1 (s)dBs +K

u,v
1 (τt) −K

u,v
1 (t)

=Y u,v
1 (τt) +

∫ τt

t

h1(s,X, us, vs)ds−

∫ τt

t

Z
u,v
1 (s)dBu,v

s +K
u,v
1 (τt) −K

u,v
1 (t).

(2.42)

Taking conditional expectation E
u,v[·|Ft], and using the comparisons Y u,v

1 (·) ≥ L1(·), Y
u,v
1 (T ) =

ξ1, as well as the fact that Ku,v
1 (·) is an increasing process, we obtain

Y
u,v
1 (t) =E

u,v

[

Y
u,v
1 (τt) +

∫ τt

t

h1(s,X, us, vs)ds+K
u,v
1 (τt) −K

u,v
1 (t)

∣

∣

∣

∣

Ft

]

≥E
u,v

[

L1(τt)1{τt∧T n
1

<T} + ξ11{τt} +

∫ τt

t

h1(s,X, us, vs)ds

∣

∣

∣

∣

Ft

]

.

(2.43)

According to the reflecting condition in BSDE (2.25), Ku,v
1 (·) is flat on {(ω, t) ∈ (Ω× [0, T ]) :

Y
u,v
1 (t) 6= L1(t)}; from the continuity of Ku,v

1 (·), we see that Ku,v
1 (τt(u, v)) = K

u,v
1 (t). On

{τt(u, v) < T}, Y u,v
1 (τt(u, v)) = L1(τt(u, v)); on {τt(u, v) = T}, Y u,v

1 (τt(u, v)) = ξ1. Then,

Y
u,v
1 (t)

=E
u,v

[

Y
u,v
1 (τt(u, v)) +

∫ τt(u,v)

t

h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

Ft

]

=E
u,v

[

L1(τt(u, v))1{τt(u,v)<T} + ξ11{τt(u,v)=T} +

∫ τt(u,v)

t

h1(s,X, us, vs)ds

∣

∣

∣

∣

∣

Ft

]

.

(2.44)

The expressions (2.44) and (2.43) mean that

Y
u,v
1 (t) = E

u,v[R1
t (τt(u, v), ρt, u, v)|Ft] ≥ E

u,v[R1
t (τt, ρt, u, v)|Ft] (2.45)
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holds for all ρt ∈ S (t, T ) and for all τt ∈ S (t, T ).

To derive the optimality of the controls (u∗, v∗) from the Isaacs condition, Assumption 2.3,
an application of the comparison theorem (Theorem 3.2 and 4.3) to the first component of
BSDE (2.25) gives Y u∗,v∗

1 (·) ≥ Y
u,v∗

1 (·) a.e. on [0, T ] × Ω. From the identity in (2.45), we
have

E
u,v∗ [R1

t (τt(u
∗, v∗), ρt(u

∗, v∗), u∗, v∗)|Ft] = Y
u∗,v∗

1 (t)

≥Y u,v∗

1 (t) = E
u,v∗ [R1

t (τt(u, v
∗), ρt(u, v

∗), u, v∗)|Ft];
(2.46)

and in conjunction with (2.45), for all τt ∈ S (t, T ), this gives

E
u∗,v∗ [R1

t (τt(u
∗, v∗), ρt(u

∗, v∗), u∗, v∗)|Ft]

≥E
u,v∗ [R1

t (τt(u, v
∗), ρt(u, v

∗), u, v∗)|Ft]

≥E
u,v∗ [R1

t (τt, ρt(u, v
∗), u, v∗)|Ft].

(2.47)

The above arguments proceed with arbitrary stopping times ρt ∈ S (t, T ), because player
II’s stopping time ρt does not enter player I’s reward.

By symmetry between the two players,

Y
u∗,v∗

2 = E
u∗,v∗ [R2

t (τt(u
∗, v∗), ρt(u

∗, v∗), u∗, v∗)|Ft], (2.48)

and

E
u∗,v∗ [R2

t (τt(u
∗, v∗), ρt(u

∗, v∗), u∗, v∗)|Ft] ≥ E
u∗,v[R2

t (τt(u
∗, v∗), ρt, u

∗, v)|Ft]. (2.49)

Combining (2.46), (2.47), (2.48) and (2.49), we see that the quadruple (τ ∗, ρ∗, u∗, v∗) is a
Nash equilibrium and their value processes V 1(·) and V 2(·) are identified with the solution
to a BSDE with reflecting barrier with parameters (T, ξ,H(u∗, v∗), L), as in (2.25). The
optimal controls (u∗, v∗) are chosen according to the Isaacs condition, Assumption 2.3. Both
players stop respectively according to the pair of rules (τ ∗t , ρ

∗
t ), as soon as their conditional

expected rewards V 1(·) and V 2(·) hit the early stopping rewards L1(·) and L2(·) for the first
time. �

Remark 2.1 If the deterministic time T is replaced by a bounded {Ft}0≤t≤T -stopping time,
it technically does not make any difference to results in this subsection.

2.2 Controls observing volatility

This subsection discusses whether the inclusion of instantaneous volatilities of the value pro-
cesses into the controls will expand the admissible control sets.

For the rewards considered in this paper, when using control u and v, the P
u,v-conditional ex-

pected rewards are P
u,v-Brownian semimartingales with respect to the filtration {Ft}0≤t≤T ,
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having the decompositions

E
u,v[R1

t (τ, ρ, u, v)|Ft] =Au,v
1 (t) +M

u,v
1 (t) = A

u,v
1 (t) +

∫ t

0

Z
u,v
1 (s)dBu,v

1 (s);

E
u,v[R2

t (τ, ρ, u, v)|Ft] =Au,v
2 (t) +M

u,v
2 (t) = A

u,v
2 (t) +

∫ t

0

Z
u,v
2 (s)dBu,v

2 (s).

(2.50)

The processes A1(·) and A2(·) are adapted and have finite variation. The processes M1(·)
and M2(·) are P

u,v-local martingales with respect to {Ft}0≤t≤T . The predictable, square-
integrable processes Zu,v

1 (·) and Z
u,v
2 (·) from martingale representation are called instan-

taneous volatility processes, the very integrand processes of the stochastic integrals in the
BSDE (2.25). Because they naturally show up in the BSDEs solved by value process of the
game, we may include the instantaneous volatilities Zu,v

1 (·) and Z
u,v
2 (·) as arguments of the

controls u and v, in the hope of making more informed decisions. Going one step further,
in the case of risk-sensitive controls initiated by Whittle, Bensoussan and coworkers, among
others, for example Bensoussan, Frehse and Nagai (1998) [4], the players are sensitive not
only to the expectations, but also to the variances of their rewards; we emphasize sensitivity
to volatilities by including them as arguments of the controls. El Karoui and Hamadène
(2003) identified in [11] risk-sensitive controls to BSDEs with quadratic growth in Z

u,v
1 (·)

and Zu,v
2 (·), which made the problem very tractable. Their value processes are different from

the risk-indifferent case only up to an exponential transformation.

Apply the controls ut = µ(t, X, Z1(t), Z2(t)) and vt = ν(t, X, Z1(t), Z2(t)), for some determin-
istic measurable functionals µ : [0, T ]×Ω×R

d ×R
d → A1 and ν : [0, T ]×Ω×R

d ×R
d → A2,

and for some {Ft}0≤t≤T -predictable processes Z1(·) and Z2(·). If the resulting instantaneous
volatilities Zu,v

1 (·) and Zu,v
2 (·) in the semimartingale decomposition (2.50) coincide with the

arguments Z1(·) and Z2(·) of the functionals µ and ν, then u and v are said to be a pair of
closed loop controls that observe the instantaneous volatilities.

Apply the controls ut = µ(t, X(t), Z1(t), Z2(t)) and vt = ν(t, X(t), Z1(t), Z2(t)), for some de-
terministic measurable functions µ : [0, T ]×R

d×R
d×R

d → A1 and ν : [0, T ]×R
d×R

d×R
d →

A2, and for some {Ft}0≤t≤T -predictable processes Z1(·) and Z2(·). If the resulting instan-
taneous volatilities Zu,v

1 (·) and Z
u,v
2 (·) in the semimartingale decomposition (2.50) coincide

with the arguments Z1(·) and Z2(·) of the functions µ and ν, then u and v are said to be a
pair of Markovian controls that observe the instantaneous volatilities. This is the case about
which we are going to have more to say.

The Hamiltonians in this case become

H1(t, ω(t), z1, (µ, ν)(t, ω(t), z1, z2))

=z1σ
−1(t, ω(t))f(t, ω(t), (µ, ν)(t, ω(t), z1, z2)) + h1(t, ω(t), (µ, ν)(t, ω(t), z1, z2))

(2.51)

and

H2(t, ω(t), z2, (µ, ν)(t, ω(t), z1, z2))

=z2σ
−1(t, ω(t))f(t, ω(t), (µ, ν)(t, X(t), z1, z2)) + h2(t, ω(t), (µ, ν)(t, ω(t), z1, z2)),

(2.52)
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for 0 ≤ t ≤ T , ω ∈ Ω, z1 and z2 in R
d, and A1 × A2-valued measurable functions (µ, ν).

From Assumption 2.1 (3) and Assumption 2.2 (2), the Hamiltonians are liner in z1 and z2,
and polynomial in sup

0≤s≤t
|ω(s)|. To be more specific, we have

|Hi(t, ω(t), z1, z2, (µ, ν)(t, ω(t), z1, z2))| ≤ A|zi| + Crwd

(

1 + sup
0≤s≤t

|ω(s)|2p

)

, (2.53)

for i = 1, 2, all 0 ≤ t ≤ T , ω ∈ Ω, z1 and z2 in R
d, and A1 ×A2-valued measurable functions

(µ, ν). The growth rates of the Hamiltonians (2.51) and (2.52) satisfy Assumption 4.1 (2) for
the driver of the BSDE (4.2). With all other assumptions on the coefficients also satisfied,
by Theorem 4.2, there exists a solution (Y µ,ν , Zµ,ν, Kµ,ν) to the following equation



























































































Y
µ,ν
1 (t) =ξ1 +

∫ T

t

H1(s,X(s), Zµ,ν
1 (s), (µ, ν)(s,X(s), Zµ,ν

1 (s), Zµ,ν
2 (s)))ds

−

∫ T

t

Z
µ,ν
1 (s)dBs +K

µ,ν
1 (T ) −K

µ,ν
1 (t),

Y
µ,ν
1 (t) ≥ L1(t), 0 ≤ t ≤ T ;

∫ T

0

(Y µ,ν
1 (t) − L1(t))dK

µ,ν
1 (t) = 0;

Y
µ,ν
2 (t) =ξ2 +

∫ T

t

H2(s,X(s), Zµ,ν
2 (s), (µ, ν)(s,X(s), Zµ,ν

1 (s), Zµ,ν
2 (s)))ds

−

∫ T

t

Z
µ,ν
2 (s)dBs +K

µ,ν
2 (T ) −K

µ,ν
2 (t),

Y
µ,ν
2 (t) ≥ L2(t), 0 ≤ t ≤ T ;

∫ T

0

(Y µ,ν
2 (t) − L2(t))dK

µ,ν
2 (t) = 0.

(2.54)

Assumption 2.4 (Isaacs condition) There exist deterministic functions µ∗ : [0, T ] × R
d ×

R
d × R

d → A1 and ν∗ : [0, T ] × R
d × R

d × R
d → A2, such that

H1(t, x, z1, (µ
∗, ν∗)(t, x, z1, z2)) = sup

z̄1,z̄2∈Rd

H1(t, x, z1, (µ, ν
∗)(t, x, z̄1, z̄2));

H2(t, x, z2, (µ
∗, ν∗)(t, x, z1, z2)) = sup

z̄1,z̄2∈Rd

H2(t, x, z2, (µ
∗, ν)(t, x, z̄1, z̄2)),

(2.55)

for all 0 ≤ t ≤ T , x, z1 and z2 in R
d, and all µ : [0, T ] × R

d × R
d × R

d → A1 and
ν : [0, T ] × R

d × R
d × R

d → A2.

Associated with the coefficients f and σ of the state process X(·) and with the rewards
h, L(·) and ξ, the admissible set U × V = {(u, v)} of Markovian controls that observe
volatilities are defined as the collection of all

(ut, vt) = (µ, ν)(t, X(t), Zµ,ν
1 (t), Zµ,ν

2 (t)), (2.56)

for measurable functions µ : [0, T ]×R
d ×R

d ×R
d → A1 and ν : [0, T ]×R

d ×R
d ×R

d → A2.
In particular,

(u∗t , v
∗
t ) = (µ∗, ν∗)(t, X(t), Zµ∗,ν∗

1 (t), Zµ∗,ν∗

2 (t)), (2.57)
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(ut, v
∗
t ) = (µ, ν∗)(t, X(t), Zµ,ν∗

1 (t), Zµ,ν∗

2 (t)), (2.58)

and
(u∗t , vt) = (µ∗, ν)(t, X(t), Zµ∗,ν

1 (t), Zµ∗,ν
2 (t)). (2.59)

Assumption 2.4 implies the Isaacs condition of Assumption 2.3. Then we reach the same
statements as in Theorem 2.1, the only difference being that (Y u,v, Zu,v, Ku,v) is now re-
placed by (Y µ,ν , Zµ,ν , Kµ,ν), and the BSDE (2.25) is replaced by the BSDE (2.54).

In fact, by Theorem 4.1, there exist deterministic measurable mappings βµ,ν
1 and β

µ,ν
2 :

[0, T ] × R
d → R

d, such that Zµ,ν
1 (t) = β

µ,ν
1 (t, X(t)), and Z

µ,ν
2 (t) = β

µ,ν
2 (t, X(t)) hold for all

0 ≤ t ≤ T . Hence (2.56) becomes

(ut, vt) = (µ, ν)(t, X(t), βµ,ν
1 (t, X(t)), βµ,ν

2 (t, X(t))), (2.60)

a pair of Markovian controls.

2.3 Rewards Terminated by Both Players

In this subsection, we shall discuss the existence of equilibrium for Game 2.2 when rewards
can be terminated by both players, in a sense weaker than (2.15). The existence of an equi-
librium as in (2.15) is still not quite clear in this case. What also remains open is to write
down a dual BSDE associated with this game, the solution to which can then be shown to
exist.

By entering Game 2.2 at time t, player I receives reward

R1
t (τ, ρ, u, v) =

∫ τ∧ρ

t

h1(s,X, us, vs)ds+











L1(τ), if player 1 stops first;

U1(ρ), if player 2 stops first;

ξ1, if neither stops before time T

(2.61)

at the time when the game is terminated, whereas player II receives reward

R2
t (τ, ρ, u, v) =

∫ τ∧ρ

t

h2(s,X, us, vs)ds+











U2(τ), if player 1 stops first;

L2(ρ), if player 2 stops first;

ξ2, if neither stops before time T

(2.62)

when the game is terminated.

To prove the existence of equilibrium for Game 2.2, we shall first study the following game.

Game 2.2’

R̄1
t (τt, ρt, u, v)

:=

∫ τt∧ρt

t

h1(s,X, us, vs)ds+ (L1 ∨ U1)(ρt ∧ τt)1{τt∧ρt<T} + ξ11{τt∧ρt=T};

R̄2
t (τt, ρt, u, v)

:=

∫ τt∧ρt

t

h2(s,X, us, vs)ds+ (L2 ∨ U2)(ρt ∧ τt)1{τt∧ρt<T} + ξ21{τt∧ρt=T},

(2.63)
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where
(Li ∨ Ui)(t) := max{Li(t), Ui(t)}, (2.64)

for 0 ≤ t ≤ T , and i = 1, 2.

Lemma 2.2 Under Assumptions 2.1 - 2.3, there exists an equilibrium (τ̄ ∗, ρ̄∗, u∗, v∗) for
Game 2.2’, in the sense of (2.15) with R1 and R2 replaced by R̄1 and R̄2.

Proof. The proof follows the inductive scheme proposed in Karatzas and Sudderth (2006)
[29]. Suppose that the controls u∗ ∈ U and v∗ ∈ V satisfy the Isaacs condition, Assumption
2.3. Let τ 0

t = ρ0
t = T . Define the stopping rules

τ̄t(y; r) = inf {s ∈ [t, r] |y(s) ≤ (L1 ∨ U1)(s)} ∧ r, (2.65)

and
ρ̄t(y; r) = inf {s ∈ [t, r] |y(s) ≤ (L2 ∨ U2)(s)} ∧ r, (2.66)

for y ∈ C[0, T ] and r ∈ [t, T ]. For n = 0, 1, 2, · · · , define the value functions as

V̄ 1
n+1(t) := sup

τt∈S (t,T )

E
u∗,v∗ [R̄1

t (τt, ρ
n
t , u

∗, v∗)|Ft], (2.67)

and
V̄ 2

n+1(t) := sup
ρt∈S (t,T )

E
u∗,v∗ [R̄2

t (τ
n
t , ρt, u

∗, v∗)|Ft]. (2.68)

The stopping times
τn+1
t := τ̄t(V̄

1
n+1; ρ

n
t ), (2.69)

and
ρn+1

t := ρ̄t(V̄
2
n+1; τ

n
t ) (2.70)

achieve the suprema in (2.67) and in (2.68), respectively. By applying Theorem 2.1 in
dimension one to each individual player, we know that the inequalities

E
u∗,v∗ [R̄1

t (τ
n+1
t , ρn

t , u
∗, v∗)|Ft] ≥ E

u,v∗ [R̄1
t (τt, ρ

n
t , u, v

∗)|Ft], ∀τt ∈ S (t, T ), ∀u ∈ U , (2.71)

and

E
u∗,v∗ [R̄2

t (τ
n
t , ρ

n+1
t , u∗, v∗)|Ft] ≥ E

u∗,v[R̄2
t (τ

n
t , ρt, u

∗, v)|Ft], ∀ρt ∈ S (t, T ), ∀v ∈ V (2.72)

hold for a.e. (t, ω) in [0, T ] × Ω.
The comparisons τ 1

t ≤ τ 0
t and ρ1

t ≤ ρ0
t imply that V̄ 1

2 (t) ≤ V̄ 1
1 (t) and V̄ 2

2 (t) ≤ V̄ 2
1 (t).

Inductively, we know that τn+1
t ≤ τn

t , ρn+1
t ≤ ρn

t , V̄ 1
n+1(t) ≤ V̄ 1

n (t) and V̄ 2
n+1(t) ≤ V̄ 2

n (t),
for all 0 ≤ t ≤ T , and all n = 0, 1, 2, · · · . The decreasing sequences of the value functions
{V̄ 1

n (t)}n∈N, {V̄ 2
n (t)}n∈N, and the stopping times {τn

t }n∈N, {ρn
t }n∈N, have limits V̄ 1

∗ (t), V̄ 2
∗ (t),

τ̄ ∗t and ρ̄∗t . Furthermore, the stopping times τ̄ ∗t and ρ̄∗t satisfy

τ̄ ∗t = τ̄t(V̄
1
∗ ; ρ̄∗t ) ≤ ρ̄∗t , (2.73)

and
ρ̄∗t = ρ̄t(V̄

2
∗ ; τ̄ ∗t ) ≤ τ̄ ∗t , (2.74)
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hence
τ̄ ∗t = ρ̄∗t . (2.75)

By the continuity of the early exercise rewards L(·) and U(·), sending n→ ∞ in (2.71) and
(2.72), we conclude that

E
u∗,v∗ [R̄1

t (τ̄t, ρ̄t, u
∗, v∗)|Ft] ≥ E

u,v∗ [R̄1
t (τt, ρ̄t, u, v

∗)|Ft], ∀τt ∈ S (t, T ), ∀u ∈ U , (2.76)

and

E
u∗,v∗ [R̄2

t (τ̄t, ρ̄t, u
∗, v∗)|Ft] ≥ E

u∗,v[R̄2
t (τ̄t, ρt, u

∗, v)|Ft], ∀ρt ∈ S (t, T ), ∀v ∈ V . (2.77)

�

Assumption 2.5 There exist adapted processes γi : [0, T ]×Ω → {0, 1}, (t, ω) 7→ γi(t, ω) =:
γi(t), such that

γi(t)Li(t) + (1 − γi(t))Ui(t) = (Li ∨ Ui)(t), (2.78)

i = 1, 2, and
γ1(t) + γ2(t) ≥ 1 (2.79)

hold for all 0 ≤ t ≤ T and ω ∈ Ω.

Theorem 2.2 In addition to Assumptions 2.1-2.3, if Assumption 2.5 also holds, then there
exists an equilibrium (τ ∗, ρ∗, u∗, v∗) for Game 2.2, in the sense that

E
u∗,v∗ [R1

t (τ
∗
t , ρ

∗
t , u

∗, v∗)|Ft] ≥ E
u,v∗ [R1

t (τt, ρ
∗
t , u, v

∗)|Ft], ∀τt ∈ S (t, τ ∗t ∧ ρ∗t ), ∀u ∈ U ;

E
u∗,v∗ [R2

t (τ
∗
t , ρ

∗
t , u

∗, v∗)|Ft] ≥ E
u∗,v[R2

t (τ
∗
t , ρt, u

∗, v)|Ft], ∀ρt ∈ S (t, τ ∗t ∧ ρ∗t ), ∀v ∈ V .

(2.80)

Proof. Let (τ̄ ∗, ρ̄∗, u∗, v∗) be the equilibrium for Game 2.2’, the quadruple specified in
Lemma 2.2. Denote by T ∗

t := τ̄ ∗t ∧ ρ̄∗t . Define the stopping rules

τ ∗t :=

{

τ̄ ∗t = τ̄t(V̄
1
∗ ;T ∗

t ), if γ1(T
∗
t ) = 1, or T ∗

t = T ;

any stopping rule with values in (T ∗
t , T ], if γ1(T

∗
t ) = 0,

(2.81)

and

ρ∗t :=

{

ρ̄∗t = ρ̄t(V̄
2
∗ ;T ∗

t ), if γ2(T
∗
t ) = 1, or T ∗

t = T ;

any stopping rule with values in (T ∗
t , T ], if γ2(T

∗
t ) = 0.

(2.82)

By Lemma 2.2, one can verify that the quadruple (τ ∗, ρ∗, u∗, v∗) is an equilibrium for Game
2.2, in the sense of (2.80). Furthermore, V̄ i

∗ (t) = V i(t) holds for all 0 ≤ t ≤ T , ω ∈ Ω, and
i = 1, 2. �
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3 A multi-dimensional reflected BSDE with Lipschitz

growth

Starting with this section, we solve multi-dimensional BSDEs with reflecting barriers, the
type of BSDEs associated with Game 2.1, and provide two useful properties of the equations:
the comparison theorem in dimension one, and the theorem about continuous dependence
of the solution on the terminal values. We have postponed the study of the BSDEs up until
this point, in order to discuss the Stochastic Game aspects first. The proofs of the results
to be stated from now onwards in this paper, do not depend on any earlier arguments or
developments.

This section assumes the following Lipschitz and integrability conditions on the parame-
ters of the equations.

Assumption 3.1 (1) The driver g is a mapping g : [0, T ] × R
m×m×d → R

m, (t, y, z) 7→
g(t, y, z). For every fixed y ∈ R

m and z ∈ R
m×d, the process {g(t, y, z)}0≤t≤T is {Ft}0≤t≤T -

predictable. For all t ∈ [0, T ], g(t, y, z) is uniformly Lipschitz in y and z, i.e. there exists a
constant b > 0, such that

|g(t, y, z) − g(t, ȳ, z̄)| ≤ b(|y − ȳ| + |z − z̄|), (3.1)

for all t ∈ [0, T ], y ∈ R
m and z ∈ R

m×d. Furthermore,

∫ T

0

g(t, 0, 0)2dt <∞. (3.2)

(2) The random variable ξ is FT -measurable and square-integrable. The lower reflecting
boundary L is continuous, progressively measurable, and satisfies

E

[

sup
[0,T ]

L+(t)2

]

<∞. (3.3)

Also, L(T ) ≤ ξ, a.e. on Ω.

Under Assumption 3.1, this section proves existence and uniqueness of solution (Y, Z,K) to
the following BSDE



















Y (t) = ξ +

∫ T

t

g(s, Y (s), Z(s))ds−

∫ T

t

Z(s)dBs +K(T ) −K(t);

Y (t) ≥ L(t), 0 ≤ t ≤ T,

∫ T

0

(Y (t) − L(t))dK(t) = 0,

(3.4)
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in the spaces

Y (·) = (Y1(·), · · · , Ym(·))′ ∈ M
2(m; 0, T )

=

{

m-dimensional predictable process φ(·) s.t. E

[

sup
[0,T ]

φ2
t

]

≤ ∞

}

;

Z(·) = (Z1(·), · · · , Zm(·))′ ∈ L
2(m× d; 0, T )

=

{

m× d-dimensional predictable process φ(·) s.t. E

[

∫ T

0

φ2
tdt

]

≤ ∞

}

;

K(·) = (K1(·), · · · , Km(·))′: continuous, increasing process in M
2(m; 0, T ),

(3.5)

where the positive integer m is the dimension of the equation. The backward equation
and the reflecting condition in (3.4) should be interpreted component-wise; for every i =
1, · · · , m, we have



















Yi(t) = ξi +

∫ T

t

gi(s, Y (s), Z(s))ds−

∫ T

t

Zi(s)dBs +Ki(T ) −Ki(t);

Yi(t) ≥ Li(t), 0 ≤ t ≤ T,

∫ T

0

(Yi(t) − Li(t))dKi(t) = 0.

(3.6)

The value process Yi(·) is driven by the Brownian noise B(·), whose intensity is modulated
by a “control” Zi(·). The driver gi leads the value Yi(·) towards the “final destination” ξi.
Whenever the ith component Yi(·) drops to the lower reflecting boundary Li(·), it receives
a force Ki(·) that kicks it upwards. When Yi(·) stays above level Li(·), the force Ki(·) does
not apply. The process Ki(·) stands for the minimum cumulative exogenous energy required
to keep Yi(·) above level Li(·). The m equations compose a system of m “vehicles” whose
“drivers” track each other. For notational simplicity, the vector form (3.4) is used as a
shorthand.

Lemma 3.1 For any processes (Y 0(·), Z0(·)) ∈ L
2(m; 0, T ) × L

2(m × d; 0, T ), there exist
unique (Y 1(·), Z1(·)) ∈ M

2(m; 0, T ) × L
2(m× d; 0, T ), and K1(·) ∈ M

2(m; 0, T ), such that



















dY 1(t) = −g(t, Y 0(t), Z0(t))dt+ Z1(t)dBt − dK1(t), 0 ≤ t ≤ T ;

Y 1(T ) = ξ;

Y 1(t) ≥ L(t), 0 ≤ t ≤ T,

∫ T

0

(Y 1(t) − L(t))dK1(t) = 0.

(3.7)

Proof. For any i = 1, · · · , m, in the ith dimension, by Corollary 3.7 of El Karoui, Kapoud-
jian, Pardoux, Peng and Quenez (1997) [12], there exists a unique solution (Y 1

i (·), Z1
i (·)) ∈

M
2(1; 0, T ) × L

2(d; 0, T ), and a continuous, increasing process K1
i (·) ∈ M

2(1; 0, T ), to the
one-dimensional reflected BSDE



















dY 1
i (t) = −gi(t, Y

0(t), Z0(t))dt+ Z1
i (t)dBt − dK1

i (t), 0 ≤ t ≤ T ;

Y 1
i (T ) = ξi;

Y 1
i (t) ≥ Li(t), 0 ≤ t ≤ T,

∫ T

0

(Y 1
i (t) − Li(t))dK

1
i (t) = 0.

(3.8)
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The processes Y 1(·) := (Y 1
1 (·), · · · , Y 1

m(·))′, Z1(·) := (Z1
1(·), · · · , Z

1
m(·))′, and K1(·) :=

(K1
1(·), · · · , K

1
m(·))′ form the desired triple. �

To prove existence and uniqueness of the solution to the multi-dimensional BSDE (3.4)
with reflecting barrier, it suffices to show that the mapping

Λ :L2(m; 0, T ) × L
2(m× d; 0, T ) → L

2(m; 0, T ) × L
2(m× d; 0, T );

(Y 0, Z0) 7→ (Y 1, Z1)
(3.9)

is a contraction.

Theorem 3.1 The mapping Λ is a contraction from L
2(m; 0, T )×L

2(m×d; 0, T ) to L
2(m; 0, T )×

L
2(m× d; 0, T ).

Proof. For a progressively measurable process φ(·), the norm ||φ||2 :=

√

E

[

∫ T

0
φ2

tdt
]

is

equivalent to the norm ||φ||2,β :=

√

E

[

∫ T

0
eβtφ2

tdt
]

. We prove the contraction statement

under the norm || · ||2,β. Suppose (Y 0(·), Z0(·)) and (Ȳ 0(·), Z̄0(·)) are both in M
2(m; 0, T )×

L
2(m×d; 0, T ). Denote (Y 1(·), Z1(·)) = Λ(Y 0(·), Z0(·)) and (Ȳ 1(·), Z̄1(·)) = Λ(Ȳ 0(·), Z̄0(·)).

Applying Itô’s rule to eβt(Y 1(t) − Ȳ 1(t))2, integrating the derivative from t to T , using
the uniform Lipschitz condition, Assumption 3.1 (1) of g, and applying some elementary
inequalities, we get that after taking expectation,

||Y 1 − Ȳ 1||22,β + ||Z1 − Z̄1||22,β ≤
1

2
||Y 0 − Ȳ 0||22,β +

1

2
||Z0 − Z̄0||22,β. (3.10)

�

Proposition 3.1 The BSDE (3.4) with reflecting barrier has a unique solution in M
2(m; 0, T )×

L
2(m× d; 0, T ).

Proof. The solution is the unique fixed-point, say (Y (·), Z(·)), of the contraction Λ.
Since (Y (·), Z(·)) ∈ L

2(m; 0, T ) × L
2(m × d; 0, T ), (Y (·), Z(·)) = Λ(Y (·), Z(·)) is also in

M
2(m; 0, T ) × L

2(m× d; 0, T ) by Lemma 3.1. �

Theorem 3.2 (Comparison Theorem, El Karoui, Kapoudjian, Pardoux, Peng and Quenez
(1997) [12])
Suppose (Y, Z,K) solves (3.4) with parameter set (ξ, g, L), and (Ȳ , Z̄, K̄) solves (3.4) with
parameter set (ξ̄, ḡ, L̄). Let dimension of the equations be m = 1. Under Assumption 3.1,
except that the uniform Lipschitz condition only needed for either g or ḡ, if
(1) ξ ≤ ξ̄, a.e.;
(2) g(t, y, z) ≤ ḡ(t, y, z), a.e. (t, ω) ∈ [0, T ] × Ω, ∀(y, z) ∈ R × R

d; and
(3) L(t) ≤ L̄(t), a.e. (t, ω) ∈ [0, T ] × Ω,
then

Y (t) ≤ Ȳ (t), a.e. (t, ω) ∈ [0, T ] × Ω. (3.11)
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Theorem 3.3 (Continuous Dependence Property)
Under Assumption 3.1, suppose that (Y, Z,K) solves RBSDE (3.4), and that (Ȳ , Z̄, K̄) solves



















Ȳ (t) = ξ̄ +

∫ T

t

g(s, Ȳ (s), Z̄(s))ds−

∫ T

t

Z̄(s)dBs + K̄(T ) − K̄(t);

Ȳ (t) ≥ L(t), 0 ≤ t ≤ T,

∫ T

0

(Ȳ (t) − L(t))dK̄(t) = 0,

(3.12)

then there exists a constant number C, such that for all 0 ≤ t ≤ T ,

E[(Y (t) − Ȳ (t))2] + E

[
∫ T

0

(Y (s) − Ȳ (s))2ds

]

+ E

[
∫ T

0

(Z(s) − Z̄(s))2ds

]

+ E[(K(t) − K̄(t))2]

≤CE[(ξ − ξ̄)2].

(3.13)

Proof. Repeating the methods in the proof of Theorem 3.1, we can show that both

E[(Y (t) − Ȳ (t))2] ≤ eβT
E[(ξ − ξ̄)2], for all 0 ≤ t ≤ T, (3.14)

and

E

[
∫ T

0

(Y (s) − Ȳ (s))2ds

]

+ E

[
∫ T

0

(Z(s) − Z̄(s))2ds

]

≤ 2eβT
E
[

(ξ − ξ̄)2
]

(3.15)

hold true.
From the expressions

K(t) = Y (0) − Y (t) −

∫ t

0

g(s, Y (s), Z(s))ds+

∫ t

0

Z(s)dBs, (3.16)

and

K̄(t) = Ȳ (0) − Ȳ (t) −

∫ t

0

g(s, Ȳ (s), Z̄(s))ds+

∫ t

0

Z̄(s)dBs. (3.17)

By the Lipschitz condition, Assumption 3.1 (1), and Itô’s isometry, for all 0 ≤ t ≤ T , we
derive the following estimation for the L

2-norm of (K(t) − K̄(t)),

E
[

(K(t) − K̄(t))2
]

≤C1

(

E
[

(Y (0) − Ȳ (0))2
]

+ E
[

(Y (t) − Ȳ (t))2
]

+ 2Tb2E

[
∫ T

0

(Y (t) − Ȳ (t))2dt

]

+ (2Tb2 + 1)E

[
∫ T

0

(Z(t) − Z̄(t))2dt

])

≤4C1(Tb
2 + 1)eβT

E
[

(ξ − ξ̄)2
]

,

(3.18)

where the last inequality follows from (3.14) and (3.15). �
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4 Markovian System with Linear Growth Rate

This section shows the existence of solution to the multi-dimensional BSDE with reflecting
barrier within a Markovian framework. The growth rate of the forward equation is assumed
polynomial in the state process X, and linear in both the value process Y and the volatil-
ity process Z. The comparison theorem in dimension one, and the continuous dependence
property of the value process and the volatility process on the terminal condition, are also
provided.

The Markovian system of forward-backward SDEs in question is the following pair of equa-
tions.

{

X t,x(s) = x, 0 ≤ s ≤ t;

dX t,x(s) = f(s,X t,x(s))ds+ σ(s,X t,x(s))dBs, t < s ≤ T.
(4.1)



























Y t,x(s) =ξ(X t,x(T )) +

∫ T

s

g(r,X t,x(r), Y t,x(r), Zt,x(r))dr −

∫ T

s

Zt,x(r)dBr

+Kt,x(T ) −Kt,x(s);

Y t,x(s) ≥L(s,X t,x(s)), t ≤ s ≤ T ,

∫ T

t

(Y t,x(s) − L(s,X t,x(s)))dKt,x(s) = 0.

(4.2)

For any x ∈ R
l, the SDE (4.1) has a unique strong solution, under Assumption 4.1 (1)

below (cf. page 287, Karatzas and Shreve (1988) [28]). A solution to the forward-backward
system (4.1) and (4.2) is a triple of processes (Y t,x, Zt,x, Kt,x) satisfying (4.2), where Y t,x ∈
M

2(m; 0, T ), Zt,x ∈ L
2(m×d; 0, T ), andKt,x is a continuous, increasing process in M

2(m; 0, T ).
The superscript (t, x) on X, Y , Z, and K indicates the state x of the underlying process X
at time t. It will be omitted for notational simplicity.

Assumption 4.1 (1) In (4.1), the drift f : [0, T ] × R
l → R

l, and volatility σ : [0, T ] ×
R

l → R
l×d, are deterministic, measurable mappings, locally Lipschitz in x uniformly over

all t ∈ [0, T ]. And for all (t, x) ∈ [0, T ] × R
l, |f(t, x)|2 + |σ(t, x)|2 ≤ C(1 + |x|2), for some

constant C.
(2) In (4.2), the driver g is a deterministic measurable mapping g : [0, T ]×R

l ×R
m×m×d →

R
m, (t, x, y, z) 7→ g(t, x, y, z). And for all (t, x, y, z) ∈ [0, T ]×R

l×R
m×R

m×d, |g(t, x, y, z)| ≤
b(1 + |x|p + |y| + |z|), for some positive constant b.
(3) For every fixed (t, x) ∈ [0, T ] × R

l, the mapping g(t, x, ·, ·) is continuous.
(4) The terminal value ξ : R

l → R
m, x 7→ ξ(x), is a deterministic measurable mapping. The

lower reflecting boundary L : [0, T ] × R
l → R

m, (s, x) 7→ L(s, x) is deterministic measurable

mapping continuous in (s, x). They satisfy E[ξ(X(T ))2] < ∞, E

[

sup
[0,T ]

L+(s,X(s))2

]

< ∞,

and L(T,X(T )) ≤ ξ(X(T )), a.e. on Ω.

Theorem 4.1 Suppose that Assumption 4.1 holds, except the growth rate condition on g.
If the driver g(s, x, y, z) in the reflected BSDE (4.2) is Lipschitz in y and z, uniform for all
s ∈ [0, T ] and all x ∈ R

l, then there exist measurable deterministic functions α : [0, T ]×R
l →

R
m, and β : [0, T ] × R

l → R
m×d, such that for any 0 ≤ t ≤ s ≤ T , Y t,x(s) = α(s,X t,x(s)),

and Zt,x(s) = β(s,X t,x(s)). The solutions to the BSDE are functions of the state process X.
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Proof. First, the one-dimensional case m = 1. There exist measurable, deterministic
functions an : [0, T ] × R

l → R, bn : [0, T ] × R
l → R

d, such that for any 0 ≤ t ≤ s ≤ T , the
solution (Y (t,x),n, Z(t,x),n) to the penalized equation

Y (t,x),n(s) =ξ(X t,x(T )) +

∫ T

s

g(r,X t,x(r), Y (t,x),n(r), Z(t,x),n(r))dr −

∫ T

s

Z(t,x),n(r)dBr

+ n

∫ T

s

(Y (t,x),n(r) − L(r,X t,x(r)))−dr

(4.3)

can be expressed as Y (t,x),n(s) = an(s,X t,x(s)), and Z(t,x),n(s) = bn(s,X t,x(s)); in particular,
Y (t,x),n(t) = an(t, x). This is the Markovian property of solutions to one one-dimensional
forward-backward SDEs with Lipschitz driver, stated as Theorem 4.1 in El Karoui, Peng
and Quenez (1997) [13]. Their proof uses the Picard iteration and the Markov property
of the iterated sequence of solutions, the latter being an interpretation of Theorem 6.27
on page 206 of Çinlar, Jacod, Protter and Sharpe (1980) [7]. Analyzed in section 6, El
Karoui, Kapoudjian, Pardoux, Peng and Quenez (1997) [12], its solution (Y (t,x),n, Z(t,x),n)
converges to some limit (Y t,x, Zt,x) in M

2(m; t, T ) × L
2(m × d; t, T ). The penalization

term n
∫ s

0
(Y (t,x),n(r) − L(r,X t,x(r)))−dr also has an M

2(m; 0, T )-limit Kt,x(s). The triple
(Y t,x, Zt,x, Kt,x) solves the system (4.1) and (4.2). But the convergences are also almost
everywhere on Ω × [t, T ], so

Y t,x(s) = lim
n→∞

Y (t,x),n(s) = lim sup
n→∞

(an(s,X t,x(s))) = lim sup
n→∞

(an)(s,X t,x(s)) =: a(s,X t,x(s)),

(4.4)
and

Zt,x(s) = lim
n→∞

Z(t,x),n(s) = lim sup
n→∞

(bn(s,X t,x(s))) = lim sup
n→∞

(bn)(s,X t,x(s)) =: b(s,X t,x(s)).

(4.5)
Back to a general dimensionm. By Theorem 3.1 and Proposition 3.1, the sequence (Y n+1, Zn+1) =
Λ(Y n, Zn), n = 0, 1, 2, · · · , iterated via the mapping Λ as in (3.1), converges to (Y, Z) a.e.
on Ω × [t, T ] and in M

2(m; 0, T ) × L
2(m × d; 0, T ). If one can prove Y 1(s) and Z1(s) are

functions of (s,X(s)), so is every (Y n(s), Zn(s)) by induction. Then the theorem holds,
because (Y, Z) is the pointwise limit of {(Y n(s), Zn(s))}n∈N. The claim is indeed true.
Starting with Y (t,x),0(s) = α0(s,X(s)), and Z(t,x),0(s) = β0(s,X(s)), for any measurable,
deterministic functions α0 : [0, T ] × R

l → R
m, and β0 : [0, T ] × R

l → R
m×d satisfying

α0(·, X t,x(·)) ∈ M
2(m; 0, T ), and β0(·, X t,x(·)) ∈ L

2(m× d; 0, T ). In an arbitrary ith dimen-
sion, 1 ≤ i ≤ m,



































Y 1
i (s) =ξi(X

t,x(T )) +

∫ T

s

gi(r,X
t,x(r), α0(r,X(r)), β0(r,X(r)))dr

−

∫ T

s

Z1
i (r)dBr +K1

i (T ) −K1
i (s);

Y 1
i (s) ≥Li(s,X

t,x(s)), t ≤ s ≤ T ,

∫ T

t

(Y 1
i (s) − Li(s,X

t,x(s)))dK1
i (s) = 0.

(4.6)
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From the one-dimensional result, there exist measurable, deterministic functions α1
i : [0, T ]×

R
l → R, and β1

i : [0, T ] × R
l → R

d, such that Y
(t,x),1
i (s) = α1

i (s,X
t,x(s)), and Z

(t,x),1
i (s) =

β1
i (s,X

t,x(s)), for all 0 ≤ t ≤ s ≤ T . Let α1 = (α1
1, · · · , α

1
m)′, and β1 = (β1

1 , · · · , β
1
m)′, then

Y (t,x),1(s) = α1(s,X t,x(s)), and Z(t,x),1(s) = β1(s,X t,x(s)), for all 0 ≤ t ≤ s ≤ T . �

Remark 4.1 To prove the above theorem, besides using the notion of additive martingales
as in Çinlar et al (1980) [7], the two deterministic functions can also be obtained by solving
a multi-dimensional variational inequality following the four-step-scheme proposed by Ma,
Protter and Yong (1994) [33].

The rest of this section will be devoted to proving the existence of solutions to the reflected
forward-backward system (4.1) and (4.2) under the Assumption 4.1. We shall construct a
specific sequence of Lipschitz drivers {gn}n∈N to approximate the linear-growth driver g.
The corresponding sequence of solutions will turn out to converge to the system (4.1) and
(4.2). We then approximate the continuous linear growth driver g by a sequence of Lipschitz
functions gn.

Let ψ̄ be an infinitely differentiable mapping from R
m × R

m×d to R, such that

ψ̄(y, z) =

{

1, |y|2 + |z|2 ≤ 1;

0, |y|2 + |z|2 ≥ 4,
(4.7)

and ψ a rescaling of ψ̄ by a multiplicative constant such that
∫

Rm×Rm×d

ψ(y, z)dydz = 1. (4.8)

The function ψ is a kernel conventionally used to smooth out non-differentiability, for exam-
ple, by Karatzas and Ocone (1992) [27], or to approximate functions of higher growth rate,
for example, by Hamadène, Lepeltier and Peng (1997) [19].

The approximating sequence gn is defined as

gn(t, x, y, z) = n2ψ
(y

n
,
z

n

)

∫

Rm×Rm×d

g(t, x, y1, z1)ψ̄(n(y − y1), n(z − z1))dy1dz1. (4.9)

According to Hamadène, Lepeltier and Peng (1997) [19], the sequence of functions gn has
the properties:
(a) gn is Lipschitz with respect to (y, z), uniformly over all (t, x) ∈ [0, T ] × R

l;
(b) |gn(t, x, y, z)| ≤ b(1 + |x|p + |y| + |z|), for all (t, x, y, z) ∈ [0, T ] × R

l × R
m × R

m×d, for
some positive constant b;
(c) |gn(t, x, y, z)| ≤ bn(1+ |x|p), for all (t, x, y, z) ∈ [0, T ]×R

l×R
m×R

m×d, for some positive
constant bn;
(d) for any (t, x) ∈ [0, T ] × R, and for any compact set S ⊂ R

m × R
m×d,

sup
(y,z)∈S

|gn(t, x, y, z) − g(t, x, y, z)| → 0, as n→ 0. (4.10)
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Proposition 4.1 The BSDE with reflecting barrier


















Y n(s) = ξ(X(T )) +

∫ T

s

gn(r,X(r), Y n(r), Zn(r))dr −

∫ T

s

Zn(r)dBr +Kn(T ) −Kn(s);

Y n(s) ≥ L(s,X(s)), t ≤ s ≤ T,

∫ T

t

(Y n(s) − L(s,X(s)))dKn(s) = 0

(4.11)
has a unique solution (Y n, Zn, Kn). Furthermore, there exist measurable, deterministic func-
tions αn and βn, such that Y n(s) = αn(s,X(s)), and Zn(s) = βn(s,X(s)), for all 0 ≤ s ≤ T .

Proof. This is a direct consequence of the uniform Lipschitz property of gn, Proposition 3.1
and Theorem 4.1. �

Lemma 4.1 Suppose (Y, Z,K) solves the BSDE (4.2) with reflecting barrier. Under the
conditions (2) and (4) of Assumption 4.1, there exists a positive constant C such that

E

[

sup
0≤s≤T

Y (s)2 +

∫ T

t

Z(r)2ds+K(T )2

]

≤ C(1 + |x|2(p∨1)). (4.12)

The constant C does not depend on t, but depends onm, b, T , E[ξ(X(T ))2] and E

[

sup
[0,T ]

L+(t, X(t))2

]

.

Proof. First prove that, for some constant C ′, we have

E

[

Y (s)2 +

∫ T

t

Z(r)2ds+K(T )2

]

≤ C ′(1 + |x|2(p∨1)), for all 0 ≤ s ≤ T. (4.13)

Applying Itô’s rule to Y (·)2, and integrating from s to T , we get

Y (s)2 +

∫ T

s

Z(r)2dr

=ξ(X(T ))2 + 2

∫ T

s

Y (r)g(r,X(r), Y (r), Z(r))dr− 2

∫ T

s

Y (r)Z(r)dB(r) + 2

∫ T

s

L(r,X(r))dK(r).

(4.14)

Taking expectations of (4.14), and using Assumption 4.1 (2), we obtain

E

[

Y (s)2 +

∫ T

s

Z(r)2dr

]

≤E[ξ(X(T ))2] + 2bE

[
∫ T

s

|Y (r)|(1 + |X(r)|p + |Y (r)| + |Z(r)|)dr

]

+ 2E

[
∫ T

s

L(r,X(r))dK(r)

]

≤E[ξ(X(T ))2] + 2E

[
∫ T

s

(1 + |X(r)|2p)dr

]

+ C1(b)E

[
∫ T

s

|Y (r)|2dr

]

+
1

4
E

[
∫ T

s

|Z(r)|2dr

]

+ 2E

[
∫ T

s

L(r,X(r))dK(r)

]

.

(4.15)
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For any α > 0,

2

∫ T

t

L(s,X(s))dK(s) ≤ 2

(

sup
[0,T ]

L(s,X(s))

)

K(T ) ≤
1

α
K(T )2 + α sup

[0,T ]

L+(s,X(s))2.

(4.16)

Combine (4.15) and (4.16), and apply Gronwall’s Lemma to Y (·),

E

[

Y (s)2 +
3

4

∫ T

s

Z(r)2dr

]

≤C2(b, T )

(

1 + E[ξ(X(T ))2] + E

[
∫ T

s

|X(r)|2pdr

]

+
1

α
K(T )2 + α sup

[0,T ]

L+(s,X(s))2

)

.

(4.17)

If rewriting (4.2) from t to T , K(·) can be expressed in terms of Y (·) and Z(·) by

K(T ) = Y (t) − ξ(X(T )) −

∫ T

t

g(s,X(s), Y (s), Z(s))ds+

∫ T

t

Z(s)dBs, (4.18)

and hence because of the linear growth Assumption 4.1 (2), we have

E[K(T )2] = C3E

[

Y (t)2 + ξ(X(T ))2 +

∫ T

t

g(s,X(s), Y (s), Z(s))2ds+

∫ T

t

Z(s)2ds

]

≤C4(b)

(

E

[

Y (t)2 + ξ(X(T ))2 + 1 +

∫ T

t

|X(s)|2pds

]

+ E

[
∫ T

t

|Y (s)|2ds

]

+ E

[
∫ T

t

|Z(s)|2ds

])

.

(4.19)

On the strength of the bounds on E[|Y (s)|2] and E

[

∫ T

t
|Z(s)|2ds

]

obtained in (4.17), we

deduce from (4.19):

E[K(T )2] ≤ C5(b, t, T )

(

E

[

ξ(X(T ))2 + 1 +

∫ T

t

|X(s)|2pds

]

+
1

α
E[K(T )2] + αE

[

sup
[0,T ]

L+(s,X(s))2

]

)

.

(4.20)

Let α = 4C5(b, t, T ), and collect E[K(T )2] terms on both sides of (4.20),

E[K(T )2] ≤ C6(b, t, T )E

[

ξ(X(T ))2 + 1 +

∫ T

t

|X(s)|2pds+ sup
[0,T ]

L+(s,X(s))2

]

. (4.21)
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Finally, (4.17) and (4.21) altogether gives

E

[

Y (s)2 +

∫ T

s

Z(r)2ds+K(T )2

]

≤C7(b, t, T )

(

1 + E[ξ(X(T ))2] + E

[
∫ T

t

|X(r)|2pdr

]

+ E

[

sup
[0,T ]

L+(s,X(s))2

])

.

(4.22)

From page 306 of Karatzas and Shreve (1988) [28], for p ≥ 1,

E

[

sup
[0,T ]

|X t,x(s)|2p

]

≤ C8(1 + |x|2p). (4.23)

Then the constant C ′ in (4.13) can be chosen as

C ′ =

(

sup
0≤t≤T

C7(b, t, T )

)

max

{

1 + E[ξ(X(T ))2] + E

[

sup
[0,T ]

L+(s,X(s))2

]

, C8T

}

<∞.

(4.24)
To bound the L

2 supremum norm of Y (·), taking first supremum over s ∈ [0, T ] then ex-
pectation, on both sides of (4.14), using Burkholder-Davis-Gundy inequality, and combining
with (4.16),

E

[

sup
[0,T ]

Y (s)2 +

∫ T

t

Z(r)2dr

]

≤E[ξ(X(T ))2] + 2bE

[

sup
[0,T ]

∫ T

s

|Y (r)|(1 + |X(r)|p + |Y (r)| + |Z(r)|)dr

]

+ C9(m)E





√

∫ T

t

|Y (r)|2 · |Z(r)|2dr



+ 2E

[
∫ T

s

L(r,X(r))dK(r)

]

≤E[ξ(X(T ))2] + bE

[
∫ T

t

|Y (r)|2dr

]

+ bE

[
∫ T

t

(1 + |X(r)|p + |Y (r)| + |Z(r)|)2dr

]

+ C9(m)E



sup
[0,T ]

|Y (s)|

√

∫ T

t

|Z(r)|2dr



+ E[K(T )2] + E

[

sup
[0,T ]

L+(s,X(s))2

]

≤E[ξ(X(T ))2] + C10(b)E

[
∫ T

t

(1 + |X(r)|2p + |Y (r)|2 + |Z(r)|2)dr

]

+
1

2
E

[

sup
[0,T ]

|Y (s)|2

]

+ 2C9(m)2
E

[
∫ T

t

|Z(r)|2dr

]

+ E[K(T )2] + E

[

sup
[0,T ]

L+(s,X(s))2

]

.

(4.25)
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Equation (4.25) implies that

1

2
E

[

sup
[0,T ]

Y (s)2

]

≤E[ξ(X(T ))2] + C10(b)E

[
∫ T

t

(1 + |X(r)|2p + |Y (r)|2 + |Z(r)|2)dr

]

+ 2C9(m)2
E

[
∫ T

t

|Z(r)|2dr

]

+ E[K(T )2] + E

[

sup
[0,T ]

L+(s,X(s))2

]

.

(4.26)

Inequalities (4.13), (4.23) and (4.26) conclude the lemma. �

Proposition 4.2 There exists a positive constant C, such that for 0 ≤ t ≤ T , n = 1, 2, · · · ,

αn(t, x) = Y (t,x),n(t) = E[Y (t,x),n(t)|Ft] ≤ C(1 + |x|p∨1). (4.27)

Proposition 4.3 The sequence {gn(·, X(·), Y n(·), Zn(·))}n∈N is uniformly bounded in the
L

2(m; t, T )-norm, and the sequence {Kn(·)}n∈N is uniformly bounded in the M
2(m; t, T )-

norm, both uniformly over all n. As n → ∞, gn(·, X(·), Y n(·), Zn(·)) weakly converges to
some limit G(·) in L

2(m; t, T ) along a subsequence, and Kn(·) weakly converges to some limit
K(·) in M

2(m; t, T ) along a subsequence, for every s ∈ [t, T ].

Proof. It suffices to show the uniform boundedness of {gn(·, X(·), Y n(·), Zn(·))}n∈N in
L

2(m; t, T ) and of {Kn(T )}n∈N in L
2(m), which is a result of the linear growth property (b)

and Lemma 4.1. The L
2(m) uniform boundedness of {Kn(T )}n∈N means that there exists

a constant C < ∞, such that E[|Kn(T )|2] < C. Since Kn(·) is required to be an increasing
process starting from Kn(t) = 0, then for all t ≤ s ≤ T , E[|Kn(s)|2] ≤ E[|Kn(T )|2] < C. �

With the help of weak convergence along a subsequence, we proceed to argue that the weak
limits are also strong, thus deriving a solution to BSDE (4.2). For notational simplicity, the
weakly convergent subsequences are still indexed by n. The passing from weak to strong
convergence makes use of the Markovian structure of the system described by Theorem 4.1,
which states that the valued process Y n(s) is a deterministic function of time s and state
process X(s) only.

Lemma 4.2 The approximating sequence of solutions {(Y (t,x),n, Z(t,x),n)}n∈N is Cauchy in
L

2(m; t, T )×L
2(m× d; t, T ), thus having a limit (Y t,x, Zt,x) in L

2(m; t, T )×L
2(m× d; t, T )

and a.e. on [t, T ] × Ω.

Proof. For any t ∈ [0, T ], any x ∈ R
l, and any n = 1, 2, · · · , Y (t,x),n(t) = αn(t, x) is

deterministic. First prove the convergence of {αn(t, x)}n∈N by showing it is Cauchy. For
n1, n2 = 1, 2, · · · , from equation (4.11) comes the following inequality,

|αn1(t, x) − αn2(t, x)| = |Y n1(t) − Y n2(t)|

≤

∣

∣

∣

∣

E

[
∫ T

t

(gn1(s,X(s), Y n1(s), Zn1(s)) − gn2(s,X(s), Y n2(s), Zn2(s)))ds

]
∣

∣

∣

∣

+ |E[Kn1(T ) −Kn2(T )]| + |E[Kn1(t) −Kn2(t)]|.

(4.28)
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By the weak convergence from Proposition 4.3, all the three summands on the right hand
side of the above inequality converge to zero, as n1 and n2 both go to infinity. Denote
the limit of αn(t, x) as α(t, x), which is consequently deterministic and measurable, because
αn(·, ·) is measurable. Theorem 4.1 states that for any t ≤ s ≤ T , Y (t,x),n(s) = αn(s,X t,x(s)).
Because of the pointwise convergence of αn(·, ·), Y (t,x),n(s) converges to some Y (t,x)(s), a.e.
(s, ω) ∈ [t, T ]×Ω, as n→ ∞. Proposition 4.2 states that there exists a positive constant C,
such that for 0 ≤ t ≤ T , n = 1, 2, · · · ,

|Y (t,x),n(s)| = |αn(s,X t,x
s )| ≤ C(1 + |X t,x

s |p∨1), (4.29)

the last term of which is square-integrable by (4.23). Then it follows from the dominated
convergence theorem that the convergence of Y (t,x),n(s) is also in L

2(m; t, T ).

Apply Itô’s rule to (Y (t,x),n1(s) − Y (t,x),n2(s))2, and integrate from s to T . The reflection
conditions in (4.2) gives

(Y n1(s) − Y n2(s))2 +

∫ T

s

(Zn1(r) − Zn2(r))2dr

≤

∫ T

s

(Y n1(r) − Y n2(r))(gn1(r,X(r), Y n1(r), Zn1(r)) − gn2(r,X(r), Y n2(r), Zn2(r)))dr

+

∫ T

s

(Y n1(r) − Y n2(r))(Zn1(r) − Zn2(r))dBr.

(4.30)

Taking expectation of (4.30),

E[(Y n1(s) − Y n2(s))2] + E

[
∫ T

s

(Zn1(r) − Zn2(r))2dr

]

≤E

[
∫ T

s

(Y n1(r) − Y n2(r))(gn1(r,X(r), Y n1(r), Zn1(r)) − gn2(r,X(r), Y n2(r), Zn2(r)))dr

]

≤E

[
∫ T

s

(Y n1(r) − Y n2(r))2dr

]

1

2

· E

[
∫ T

s

(gn1(r,X(r), Y n1(r), Zn1(r)) − gn2(r,X(r), Y n2(r), Zn2(r)))2dr

]

1

2

.

(4.31)

In order to prove convergence of {Zn(·)}n∈N, it suffices to prove uniform boundedness of

E

[

∫ T

t
gn(s,X(s), Y n(s), Zn(s))2ds

]

, for all n, which is part of Proposition 4.3. The L
2(m×

d; t, T )-convergence of {Zn}n∈N implies almost sure convergence along a subsequence, also
denoted as {Zn}n∈N to simplify the notation. �

We have identified a strongly convergent subsequence of {(Y n, Zn)}n∈N, also denoted as
{(Y n, Zn)}n∈N. Let’s remind ourselves that (Y n, Zn) solves the system (4.1) and (4.11), so
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if the weak limit G(·) of gn(·, X(·), Y n(·), Zn(·)) is also the strong limit, and if G(·) has
the form g(·, X(·), Y (·), Z(·)), then the limit (Y, Z,K) indeed solves the forward-backward
system (4.1) and (4.2).

Lemma 4.3 As n → ∞, gn(s,X(s), Y n(s), Zn(s)) → g(s,X(s), Y (s), Z(s)), in L
2(m; t, T )

and a.e. on [t, T ] × Ω.

Proof. The method is the same as that on page 122 of Hamadène, Lepeltier and Peng
(1997) [19]. The proof is briefly repeated here for completeness.

E

[
∫ T

t

|gn(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y (s), Z(s))|ds

]

≤E

[
∫ T

t

|gn(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y n(s), Zn(s))|1{|Y n(s)+Zn(s)|≥A}ds

]

+ E

[
∫ T

t

|gn(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y n(s), Zn(s))|1{|Y n(s)+Zn(s)|≤A}ds

]

+ E

[
∫ T

t

|g(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y (s), Z(s))|ds

]

.

(4.32)

By linear growth Assumption 4.1 (2) for g and property (b) for gn, and Lemma 4.1, both

|gn(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y n(s), Zn(s))| (4.33)

and
|g(s,X(s), Y n(s), Zn(s)) − g(s,X(s), Y (s), Z(s))| (4.34)

are uniformly bounded in L
2(m; 0, T ) for all n. The first term on the right hand side of

(4.32) is at most of the order 1
A
, thus vanishing as A goes to infinity. Recalling property (d),

for fixed A, the second term vanishes as n → ∞. Because of its uniform boundedness in
L

2(m; t, T ), the integrand in the third term is uniformly integrable for all n, so expectation
of the integral again goes to 0 as n→ ∞.
The a.e. convergent subsequence of gn(s,X(s), Y n(s), Zn(s)) is also indexed by n to simplify
the notation. �

Proposition 4.4 The L
2(m; t, T ) convergence and the a.e. convergence of {Y (t,x),n(s)}n∈N

to Y (t,x)(s) are uniform over all s ∈ [t, T ].

Proof. To see uniform convergence of {Y n}, applying Itô’s rule to (Y n(s) − Y (s))2, inte-
grating from s to T , taking supremum over 0 ≤ s ≤ T and then expectation, by Burkholder-
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Davis-Gundy inequality,

E

[

sup
[0,T ]

(Y n(s) − Y (s))2

]

+ E

[
∫ T

t

(Zn(r) − Z(r))2dr

]

≤E

[

sup
[0,T ]

∫ T

s

(Y n(r) − Y (r))(gn(r,X(r), Y n(r), Zn(r)) − g(r,X(r), Y (r), Z(r)))dr

]

+ E

[

(
∫ T

t

(Y n(r) − Y (r))2(Zn(r) − Z(r))2dr

)

1

2

]

≤E

[(
∫ T

s

(gn(s,X(r), Y n(r), Zn(r)) − g(r,X(r), Y (r), Z(r)))2dr

)

1

2

· sup
s∈[0,T ]

(
∫ T

s

(Y n(r) − Y (r))2dr

)

1

2
]

+ E

[

sup
s∈[0,T ]

{|Y n(s) − Y (s)|}

(
∫ T

t

(Zn(r) − Z(r))2dr

)

1

2

]

≤

(

E

[
∫ T

t

(gn(r,X(r), Y n(r), Zn(r)) − g(r,X(r), Y (r), Z(r)))2dr

])

1

2

·

(

E

[
∫ T

t

(Y n(r) − Y (r))2dr

])

1

2

+
1

4
E

[

sup
s∈[0,T ]

|Y n(s) − Y (s)|2

]

+ E

[
∫ T

t

(Zn(r) − Z(r))2dr

]

.

(4.35)

Equation (4.35) implies

3

4
E

[

sup
s∈[0,T ]

(Y n(s) − Y (s))2

]

≤

(

E

[
∫ T

t

(Y n(r) − Y (r))2dr

])

1

2

·

(

E

[
∫ T

t

(gn(r,X(r), Y n(r), Zn(r)) − g(r,X(r), Y (r), Z(r)))2dr

])

1

2

.

(4.36)

By Proposition 4.3, by linear growth properties (b) of gn and Assumption 4.1 (2) on g,
and by Lemma 4.1, the second multiplier on the right hand side of (4.36) is bounded by a
constant, uniformly over all n. By Lemma 4.2, the first multiplier on the right hand side of
(4.36) converges to zero as n→ ∞. Hence

lim
n→∞

E

[

sup
[0,T ]

(Y n(s) − Y (s))2

]

= 0. (4.37)

�

Proposition 4.5 The process Kn(·) converges to some limit K(·) in M
1(m; t, T ), uniformly

over all s ∈ [t, T ], and a.e. on [t, T ] × Ω.
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Proof. Define

K̄(s) := Y (t) − Y (s) −

∫ s

t

g(r,X(r), Y (r), Z(r))dr +

∫ s

t

Z(r)dBr, t ≤ s ≤ T, (4.38)

where Y (·), Z(·) and g are the limits of Y n(·), Zn(·) and gn. From (4.11),

Kn(s) = Y n(t) − Y n(s) −

∫ s

t

gn(r,X(r), Y n(r), Zn(r))dr +

∫ s

t

Zn(r)dBr. (4.39)

Need to show that

E

[

sup
s∈[0,T ]

∣

∣Kn(s) − K̄(s)
∣

∣

]

→ 0, (4.40)

as n→ ∞.

For all n = 1, 2, · · · ,

E

[

sup
s∈[0,T ]

∣

∣Kn(s) − K̄(s)
∣

∣

]

≤E [|Y n(t) − Y (t)|] + E

[

sup
s∈[0,T ]

|Y n(s) − Y (s)|

]

+ E

[

sup
s∈[0,T ]

∣

∣

∣

∣

∫ s

t

(Zn(r) − Z(r))dBr

∣

∣

∣

∣

]

+ E

[
∫ T

t

|gn(r,X(r), Y n(r), Zn(r)) − g(r,X(r), Y (r), Z(r))| dr

]

.

(4.41)

As n→ ∞, the first three summands in (4.41) go to zero, by Lemma 4.2, Proposition 4.4 and
Lemma 4.3. From Burkholder-Davis-Gundy inequality, there exists a constant C universal
for all n, such that

E

[

sup
s∈[0,T ]

∣

∣

∣

∣

∫ s

t

(Zn(r) − Z(r))dBr

∣

∣

∣

∣

]

≤ CE

[

(
∫ T

t

|Zn(r) − Z(r)|2dr

)

1

2

]

, (4.42)

the right hand side of which converges to zero as n→ ∞, by Lemma 4.2.
The a.e. convergent subsequence is still denoted as {Kn(·)}n∈N to simplify the notation. The
strong limit K̄(·) coincides with the weak limit K(·) in Proposition 4.3. �

Proposition 4.6 The processes Y (·) andK(·) satisfy the reflection conditions Y (·) ≥ L(·, X(·))

and
∫ T

t
(Y (s) − L(s,X(s)))dK(s) = 0.

Proof. Since (Y n, Zn, Kn) solves (4.11), Y n(·) and Kn(·) satisfy the reflecting conditions

Y n(s) ≥ L(s,X(s)), t ≤ s ≤ T , and
∫ T

t
(Y n(s) − L(s,X(s)))dKn(s) = 0. Since Y n(·)

converges to Y (·) pointwisely on [0, T ] ×Ω, that Y (·) ≥ L(·, X(·)) holds true. It remains to
prove

∫ T

t

(Y (s) − L(s,X(s)))dK(s) =

∫ T

t

(Y n(s) − L(s,X(s)))dKn(s). (4.43)
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To wit,

∣

∣

∣

∣

∫ T

t

(Y n(s) − L(s,X(s)))dKn(s) −

∫ T

t

(Y (s) − L(s,X(s)))dK(s)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ T

t

(Y n(s) − Y (s))dKn(s)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

t

(Y (s) − L(s,X(s)))d(K(s) −Kn(s))

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

sup
s∈[0,T ]

{Y n(s) − Y (s)}Kn(T )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ T

t

(Y (s) − L(s,X(s)))d(K(s) −Kn(s))

∣

∣

∣

∣

.

(4.44)

Let n tend to zero. By Proposition 4.4, the first summand in the last line of (4.44) con-
verges to |0 ·K(T )| = 0, a.e. on Ω. Proposition 4.5 implies that Kn(s) converges to K(s) in
probability, uniformly over all s ∈ [t, T ], so the measure dKn(s) weakly converges to dK(s)
in probability, uniformly over all s ∈ [t, T ]. It follows that the second summand in the last
line of (4.44) converges to zero, a.e. on Ω. �

We may now conclude the following existence result.

Theorem 4.2 Under Assumption 4.1, there exists a solution (Y, Z,K) to the BSDE (4.2)
with reflecting barrier in the Markovian framework.

Proof. The solutions {(Y n, Zn, Kn)}n∈N to the approximating equations (4.11) have limits
(Y, Z,K). The triple (Y, Z,K) is a solution to the Markovian system (4.1) and (4.2). �

Theorem 4.3 (Comparison Theorem)
Suppose (Y t,x, Zt,x, Kt,x) solves forward-backward system (4.1) and (4.2) with parameter set
(ξ, g, L), and (Ȳ t,x, Z̄t,x, K̄t,x) solves the forward-backward system (4.1) and (4.2) with pa-
rameter set (ξ̄, ḡ, L̄). Let dimension of the equations be m = 1. Under Assumption 4.1 for
both sets of parameters, if
(1) ξ(x) ≤ ξ̄(x), a.e., ∀x ∈ R

l;
(2) g(s, x, y, z) ≤ ḡ(s, x, y, z), for all t ≤ s ≤ T , and all (x, y, z) ∈ R

l × R × R
d; and

(3) L(s, x) ≤ L̄(s, x), for all t ≤ s ≤ T , and all x ∈ R
l,

then

Y t,x(s) ≤ Ȳ t,x(s), for all t ≤ s ≤ T. (4.45)

Proof. Let {gn}n∈N and {ḡn}n∈N be, respectively, the uniform Lipschitz sequences approxi-
mating g and ḡ as in (4.9). According to Property (a), both gn and ḡn are Lipschitz in (y, z),
for all t and x. We notice that (2) in the conditions of this theorem implies that

gn(s, x, y, z) ≤ ḡn(s, x, y, z), (4.46)

for all t ≤ s ≤ T , and all (x, y, z) ∈ R
l × R

m × R
m×d, via construction (4.9). Let

(Y (t,x),n, Z(t,x),n, K(t,x),n) be solution to system (4.1) and (4.2) with parameter set (ξ, gn, L),
and (Ȳ (t,x),n, Z̄(t,x),n, K̄(t,x),n) be solution to system (4.1) and (4.2) with parameter set (ξ̄, ḡn, L̄).
By Theorem 3.2,

Y (t,x),n(s) ≤ Ȳ (t,x),n(s), t ≤ s ≤ T. (4.47)
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But as n→ ∞, proven earlier in this section,

Y (t,x),n(·) → Y t,x(·), Ȳ (t,x),n(·) → Ȳ t,x(·), a.e. on [t, T ] × Ω and in L
2(m; t, T ), (4.48)

so
Y t,x(s) ≤ Ȳ t,x(s), t ≤ s ≤ T. (4.49)

�

Theorem 4.4 (Continuous Dependence Property)
Under Assumption 4.1, if (Y t,x, Zt,x, Kt,x) solves the system (4.1) and (4.2), and
(Ȳ t,x, Z̄t,x, K̄t,x) solves the system (4.1) and


























Ȳ t,x(s) =ξ̄(X t,x(T )) +

∫ T

s

g(r,X t,x(r), Ȳ t,x(r), Z̄t,x(r))dr −

∫ T

s

Z̄t,x(r)dBr

+ K̄t,x(T ) − K̄t,x(s);

Ȳ t,x(s) ≥L(s,X t,x(s)), t ≤ s ≤ T ,

∫ T

t

(Ȳ t,x(s) − L(s,X t,x(s)))dK̄t,x(s) = 0,

(4.50)

then

E[(Y t,x(s) − Ȳ t,x(s))2] + E

[
∫ T

s

(Zt,x(r) − Z̄t,x(r))2dr

]

≤E[|ξ − ξ̄|2] + CE

[
∫ T

s

(Y t,x(r) − Ȳ t,x(r))2dr

]

1

2

, 0 ≤ t ≤ s ≤ T.

(4.51)

Proof. Apply Itô’s rule to (Y t,x − Ȳ t,x)2, and integrate from s to T . Use Lemma 4.1 and
Assumption 4.1 (2). �

Remark 4.2 When the driver g is concerned about in Assumption 4.1, 4.1 (2) (linear growth
rates in y and z, and polynomial growth rate in x) is crucial in bounding the L

2-norms thus
proving convergence of a Lipschitz approximating sequence. It is likely that the continuity
Assumption 4.1 (3) can be relaxed, because a measurable function can always be approximated
by continuous functions of the same growth rate.

Remark 4.3 The results in section 3 and section 4 are valid for any arbitrary filtered proba-
bility space that can support a d-dimensional Brownian motion. In particular, in the canoni-
cal space set up at the beginning of section 2, we may replace Assumption 4.1 (1) and (2) with
the more general Assumption 4.1 (1’) and (2’), while still getting exactly the same statements
in section 4 with tiny modifications of the proofs. Assumption 4.1 corresponds to Assumption
2.1 on the state process X(·) in (2.3). The growth rate (2.53) of the Hamiltonians (2.51)
and (2.52) satisfies Assumption 4.1 (2’).

Assumption 4.1 (1’) In (4.1), the drift f : [0, T ] × C l[0,∞) → R
l, (t, ω) 7→ f(t, ω(t)),

and volatility σ : [0, T ]×C l[0,∞) → R
l×d, (t, ω) 7→ σ(t, ω(t)), are deterministic, measurable

mappings such that

|f(t, ω(t)) − f(t, ω̄(t))| + |σ(t, ω(t)) − σ(t, ω̄(t))| ≤ C sup
0≤s≤t

|ω(s) − ω̄(s)|, (4.52)
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and

|f(t, ω(t))|2 + |σ(t, ω(t))|2 ≤ C

(

1 + sup
0≤s≤t

|ω(s)|2
)

, (4.53)

with some constant C for all 0 ≤ t ≤ T , ω and ω̄ in C l[0,∞).
(2’) In (4.2), the driver g is a deterministic measurable mapping g : [0, T ] × C l[0,∞) ×
R

m×m×d → R
m, (t, ω, y, z) 7→ g(t, ω(t), y, z). And

|g(t, ω(t), y, z)| ≤ b

(

1 + sup
0≤s≤t

|ω(s)|p + |y| + |z|

)

, (4.54)

with some positive constant b for all (t, ω, y, z) ∈ [0, T ] × C l[0,∞) × R
m × R

m×d.
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